To proceed to solve this problem we will use the relationships given for longitudinal and lateral strain. This relationship is given by the change in the initial and final length for each of the directions, so the longitundinal strain would be
[tex]\epsilon_x = \frac{l_f-l_i}{l_i}[/tex]
[tex]\epsilon_x = \frac{7.40339-7.4}{7.4}[/tex]
[tex]\epsilon_x = 0.0004581[/tex]
The lateral strain would be
[tex]\epsilon_y = \frac{a_f-a_i}{a_i}[/tex]
[tex]\epsilon_y = \frac{2.19966-2.2}{2.2}[/tex]
[tex]\epsilon_y = -0.000154[/tex]
Calculating the Poisson's ratio
[tex]\upsilon = -\frac{\epsilon_y}{\epsilon_x}[/tex]
[tex]\upsilon = -\frac{-0.000154}{0.0004581}[/tex]
[tex]\upsilon = 0.336171[/tex]
Therefore the Poisson's ratio for the material is 0.336171