Let X have the uniform distribution U(0, 2) and let the conditional distribution of Y , given that X = x, be U(0, x). Find the joint p.d.f. f(x, y) of X and Y , and be sure to state the domain of f(x, y). Find E(Y |x)

Respuesta :

Answer:

[tex]f(x,y) = \frac{1}{x} \frac{1}{2}= \frac{1}{2x} , 0\leq x \leq 2 , 0\leq y \leq x[/tex]

[tex]E(Y|x) = \int_{x=y}^2 y \frac{1}{x} dx= y ln x \Big|_{x=y}^2 =y ln 2 -y ln y = y(1-lny) \[/tex]

Step-by-step explanation:

We have two random variables X and Y. [tex]X \sim Unif(0,2)[/tex] and given that X=x, Y has uniform distribution (0,x)

From the definition of the uniform distribution we have the densities for each random variable given by:

[tex]f_X (x) =\frac{1}{2} , 0\leq x\leq 2[/tex]

[tex]f_{Y|X} (y|x) = \frac{1}{x}, 0\leq y \leq x[/tex]

And on this case we can find the joint density with the following formula:

[tex]f(x,y) = f_{Y|X}(y|x) f_X (x)[/tex]

And multiplying the densities we got this:

[tex]f(x,y) = \frac{1}{x} \frac{1}{2}= \frac{1}{2x} , 0\leq x \leq 2 , 0\leq y \leq x[/tex]

Now with the joint density we can find the expected value E(Y|x) with the following formula:

[tex]E(Y|x) = \int y f_{Y|X}(y|x)dx[/tex]

And replacing we got:

[tex]E(Y|x) = \int_{x=y}^2 y \frac{1}{x} dx= y ln x \Big|_{x=y}^2 =y ln 2 -y ln y = y(1-lny) \[/tex]

ACCESS MORE
EDU ACCESS