Answer:
[tex]\rho_{0}=\frac{6 M}{5 \pi R^{3}}[/tex]
Explanation:
Given:
Mass of the spherical planet = M
Radius of the spherical planet = R
[tex]\rho = \rho_0(1-\frac{r}{2R})[/tex]
To Find :
[tex]\rho[/tex] in terms of M and R = ?
Solution:
Surface area integral = [tex]\oint \vec{g} \cdot \overrightarrow{d A}=-4 \pi G M[/tex]
[tex]g \cdot 4 \pi r^{2}=-4 \pi G \cdot M_{e n c l o s e d}[/tex]
[tex]g \cdot r^{2}=G \cdot M_{e n c l o s e d}[/tex]
[tex]M_{\text {enclosed}}=\oint_{0}^{r} \rho \cdot 4 \pi r^{2} \cdot d r[/tex]
[tex]M_{e n c l o s e d}=\oint_{0}^{r} \rho_{o\left(r^{2}-\frac{r^{3}}{2 R}\right)} \cdot 4 \pi r^{2} . d r[/tex]
[tex]M_{e n c l o s e d}=4 \pi \rho_{0} \oint_{0}^{r}\left(r^{2}-\frac{r^{3}}{2 R}\right) d r[/tex]
Substituting r = R
[tex]M_{\text {enclosed}}=4 \pi \rho_{0}\left(\frac{R^{3}}{3}-\frac{R^{4}}{8 R}\right)[/tex]
[tex]M_{\text {enclosed}}=4 \pi \rho_{0} R^{3}\left(\frac{1}{3}-\frac{1}{8}\right)[/tex]
[tex]M_{\text {enclosed}}=4 \pi \rho_{0} R^{3}\left(\frac{8-3}{24}\right)[/tex]
[tex]M_{\text {enclosed}}=4 \pi \rho_{0} R^{3}\left(\frac{5}{24}\right)[/tex]
[tex]\rho_{0}=\frac{24}{5} \frac{M}{4 \pi R^{3}}[/tex]
[tex]\rho_{0}=\frac{6 M}{5 \pi R^{3}}[/tex]