Respuesta :
Answer:
[tex]15^{\circ}[/tex]
Explanation:
Using Snell's law which is represented by
[tex]n_1sin\theta_1 = n_2sin\theta_2[/tex]
Making [tex]\theta_2[/tex] the subject of the formula then
[tex]\theta_2=sin^{-1}(\frac {n_1sin\theta_1}{n_2})[/tex]
Here [tex]\theta_1[/tex] and [tex]\theta_2[/tex] are the angles of incidence and refraction in water and air respectively
[tex]n_1[/tex] and [tex]n_2[/tex] are refraction index
Substituting 1.0003 for [tex]n_1[/tex] and 1.33 for [tex]n_2[/tex] then [tex]20^{\circ}[/tex] for [tex]\theta 1[/tex] we obtain
[tex]\theta_2=sin^{-1}(\frac {1.0003\times sin 20^{\circ}}{1.33})=14.90606875^{\circ}\approx 15^{\circ}[/tex]
Otras preguntas
