Answer:
The margin of error for the given values is 0.33725
Step-by-step explanation:
The margin of error expresses the maximum expected difference between the true population parameter and a sample estimate of that parameter. To be meaningful, the margin of error should be qualified by a probability statement (often expressed in the form of a confidence level).
Margin error = [tex]c(\frac{o}{\sqrt{n}})[/tex]
Now substituting the values we get
Margin error = [tex]0.95(\frac{3.2}{\sqrt{81}})[/tex]
Margin error = [tex]0.95(\frac{3.2}{9})[/tex]
Margin error = [tex]0.95(\frac{3.2}{9})[/tex]
Margin error = [tex]0.95 \times (0.355)[/tex]
Margin error = 0.33725