Respuesta :
Answer:
A) [tex]\frac{g}{b}(1-e^{-bt})[/tex]
Explanation:
Since a = g - bv,
We can substitute a = dv/dt into the equation.
Then, the equation will be like dv/dt = g - bv.
So we got first order differential equation.
As known, v = 0 at t = 0, and v = g/b at t = ∞.
Since [tex]\frac{dv}{dt}= g - bv = b( \frac{g}{b} - v)[/tex] ⇒ [tex]\frac{dv}{ \frac{g}{b} - v}= bdt[/tex]
So take the integral of both side.
[tex]- ln (\frac{g}{b} - v) = bt + C[/tex]
Since for t=0, v = 0 ⇒ [tex]C =- ln (\frac{g}{b})[/tex]
[tex]v = \frac{g}{b} + e^{-bt-ln(\frac{g}{b})} = \frac{g}{b}- \frac{g}{b}e^{-bt} = \frac{g}{b}(1-e^{-bt})[/tex]
The correct option for the expression of speed as an explicit function of time is option A
A) v = g·(1 - [tex]e^{-b \cdot t[/tex])/b
The reason why option A is correct is given as follows;
Known:
The initial velocity of the object at time t = 0 is v = 0 (object at rest)
The function that represents the acceleration is a = g - b·v
Where;
v = The speed of the object at the given instant
b = A constant term
By considering the limiting case for time t, we have;
At very large values of t, the velocity will increase such that we have;
[tex]\lim \limits_{t \to \infty} a = 0[/tex] therefore, [tex]\lim \limits_{t \to \infty} g - b\cdot v = 0[/tex] and [tex]\lim \limits_{t \to \infty} \left( v_{max} = \dfrac{g}{b} \right)[/tex]
The given equation can be rewritten as follows, to express the equation in terms the velocity;
[tex]a = b \cdot \left(\dfrac{g}{b} - v \right) = b \cdot \left(v_{max} - v \right)[/tex]
[tex]Acceleration, \ a = \dfrac{dv}{dt}[/tex]
Therefore;
[tex]\dfrac{dv}{dt} = b \cdot \left(\dfrac{g}{b} - v \right)[/tex]
The above differential equation gives;
[tex]\dfrac{dv}{ \left(\dfrac{g}{b} - v \right)} = b \cdot dt[/tex]
Which gives;
[tex]\displaystyle \int\limits {\dfrac{dv}{ \left(\dfrac{g}{b} - v \right)} } = \int\limits {b \cdot dt} = b \cdot t + C[/tex]
[tex]\displaystyle \int\limits {\dfrac{dv}{ \left(\dfrac{g}{b} - v \right)} } = -\ln \left(\dfrac{g}{b} - v \right)[/tex] and [tex]\displaystyle\int\limits{b \cdot dt} = b \cdot t + C[/tex]
Therefore
[tex]\displaystyle -\ln \left(\dfrac{g}{b} - v \right) =b \cdot t + C[/tex]
At t = 0, v = 0, therefore;
[tex]\displaystyle -\ln \left(\dfrac{g}{b} - 0 \right) =b \times 0 + C[/tex]
[tex]C = \displaystyle -\ln \left(\dfrac{g}{b} \right)[/tex]
Which gives;
[tex]\displaystyle -\ln \left(\dfrac{g}{b} - v \right) =b \cdot t \displaystyle -\ln \left(\dfrac{g}{b} \right)[/tex]
[tex]\displaystyle \ln \left(\dfrac{g}{b} - v \right) =-b \cdot t \displaystyle +\ln \left(\dfrac{g}{b} \right)[/tex]
[tex]\displaystyle \dfrac{g}{b} - v = e^{-b \cdot t \displaystyle +\ln \left(\dfrac{g}{b} \right)} = e^{-b \cdot t} \times e^\ln \left(\dfrac{g}{b} \right)} = e^{-b \cdot t} \times \dfrac{g}{b}[/tex]
[tex]\displaystyle \dfrac{g}{b} - e^{-b \cdot t} \times \dfrac{g}{b} = v[/tex]
[tex]\displaystyle \dfrac{g}{b} \cdot \left(1 - e^{-b \cdot t} \right) = v[/tex]
∴ v = g·(1 - [tex]e^{-b \cdot t[/tex])/b
The correct option is option (A)
Learn more about differential equation here;
https://brainly.com/question/13309100