Respuesta :
Answer:
[H⁺] = 6.083x10⁻⁴ M, [C₆H₅OO⁻] = 6.083x10⁻⁴ M, [C₆H₅OOH] = 3.98x10⁻³M, pH = 3.22
Explanation:
Data: we have 0.56 gr of benzoic acid, disolved in 1Lt of water. Kₐ = 6.4x10⁻⁵
M (molar mass) of BA (Benzoic Acid) = 122 g/mol
Then, the inicial concentration is 0.56/122 = 4.59x10⁻³ M
We should consider the equation once it reaches the equilibrium:
C₆H₅COOH ⇄ C₆H₅COO⁻ + H⁺
C - x x x
And, for the Kₐ:
Kₐ = [H⁺][C₆H₅COO⁻]/[C₆H₅COOH] = x²/(C-x) , where C = 4.59x10⁻³
Then: x² + Kₐx - KₐC = 0
x² + 6.4x10⁻⁵ - 2.9x10⁻⁷ = 0
Resolving this cuadratic equation (remember to use Baskara equation), we obtain:
x = 6.083x10⁻⁴ M
Then: [H⁺] = [C₆H₅COO⁻] = 6.083x10⁻⁴ M
[C₆H₅COOH] = C - x = 3.98x10⁻³ M
pH = -Log [H⁺] = 3.22
Answer:
The values of
[tex]$\left[\mathrm{H}^{+}\right]=\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}_{2}^{-}\right]=5.1 \times 10^{-4} \mathrm{M}$[/tex]
[tex]$\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}_{2} \mathrm{H}\right]=4.1 \times 10^{-3} \mathrm{M}$[/tex]
[tex]$\left[\mathrm{OH}^{-}\right]=1.9 \times 10^{-11} \mathrm{M}[/tex]
[tex]$\mathrm{pH}=3.29$[/tex]
Explanation:
Dissolving benzoic acid [tex]=0.56 \ g[/tex]
[tex]$\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}_{2} \mathrm{H}, K_{\mathrm{a}}=6.4 \times 10^{-5}\right)$[/tex]
Water in solution [tex]=1.0\ L[/tex]
Step 1:
Mass of benzoic acid dissolved in water [tex]$(\mathrm{m})=0.56$[/tex]
Final volume [tex]$(V)=1 \ L[/tex]
The benzoic acid dissociation constant: [tex]$\mathrm{K}_{a}=6.4 \times 10^{-5}$[/tex]
The number of moles of benzoic acid: [tex]$\mathrm{n}=\frac{\mathrm{m}}{\mathrm{M}_{m}}$[/tex]
Molarity of benzoic acid: [tex]$\mathrm{M}=\frac{\mathrm{n}}{\mathrm{V}}$[/tex]
Step 2:
Calculate the molarity (M) of benzoic acid.
For this, we must first calculate the molar mass [tex]$\left(\mathrm{M}_{m}\right)$[/tex] and the number of moles (n) of benzoic acid:
[tex]$\mathrm{M}_{m}=7 \times \mathrm{M}_{m}(\mathrm{C})+6 \times \mathrm{M}_{m}(\mathrm{H})+2 \times \mathrm{M}_{m}(\mathrm{O})$[/tex][tex]$\mathrm{M}_{m}=7 \times 12.011 \mathrm{~g} / \mathrm{mol}+6 \times 1.008 \mathrm{~g} / \mathrm{mol}+2 \times 15.999 \mathrm{~g} / \mathrm{mol}=122.123 \mathrm{~g} / \mathrm{mol}$[/tex]
[tex]$\mathrm{n}=\frac{0.56 \mathrm{~g}}{122.123 \mathrm{~g} / \mathrm{mol}}=4.59 \times 10^{-3} \mathrm{~mol}$$[/tex]
[tex]$\mathrm{M}=\frac{4.59 \times 10^{-3} \mathrm{~mol}}{1 \mathrm{~L}}=4.59 \times 10^{-3} \mathrm{M}$[/tex]
Step 3:
Dissociation equations and the dissociation constants:
[tex]$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}_{2} \mathrm{H}_{(a q)} \Leftrightarrow \mathrm{H}_{(a q)}^{+}+\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}_{2}^{-}(a q) \quad \mathrm{K}_{a}=6.4 \times 10^{-5}$[/tex]
[tex]$\mathrm{H}_{2} \mathrm{O}_{(l)} \Leftrightarrow \mathrm{H}_{(a q)}^{+}+\mathrm{OH}_{(a q)}^{-} \quad \mathrm{K}_{w}=1.0 \times 10^{-14}$[/tex]
Step 4:
[tex]$\mathrm{K}_{a}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}_{2}^{-}\right]}{\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}_{2} \mathrm{H}\right]}=6.4 \times 10^{-5}$[/tex]
The approximation for[tex]$\left[\mathrm{H}^{+}\right]_{0}$[/tex] is 0. (because of autonization)
[tex]$\left[\mathrm{H}^{+}\right]_{0}=10^{-7} \mathrm{M} \approx 0$[/tex]
Step 5:
Symbol x represents the change in the concentrations.
[tex]$\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}_{2} \mathrm{H}\right]=\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}_{2} \mathrm{H}\right]_{0}-\mathrm{x}=0.00459-\mathrm{x}$[/tex]
[tex]$\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}_{2}^{-}\right]=\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}_{2}^{-}\right]_{0}+\mathrm{x}=0+\mathrm{x}=\mathrm{x}$[/tex]
[tex]$\left[\mathrm{H}^{+}\right]=\left[\mathrm{H}^{+}\right]_{0}+x=0+x=x$[/tex]
Step 6:
Substituting x into the equilibrium expression:
[tex]$\frac{(x)(x)}{0.00459-x}=6.4 \times 10^{-5}$[/tex]
We must determine if the [tex]$\left[\mathrm{H}^{+}\right]$[/tex] is much smaller than [tex]$0.00459$[/tex] to decide whether the following approximation is valid or not:
[tex]$0.00459-x \approx 0.00459$[/tex]
[tex]$\frac{(x)(x)}{0.00459}=6.4 \times 10^{-5}$[/tex]
[tex]$x^{2}=2.4 \times 10^{-7}$[/tex]
[tex]$\mathrm{x}=4.9 \times 10^{-4}=\left[\mathrm{H}^{+}\right]$\\[/tex]
[tex]$\frac{\mathrm{x}}{0.00459} \times 100 \%=10.7 \%>5 \%$[/tex]
The approximation is not valid since more than [tex]$5 \%$[/tex] of acid is dissociated.
Step 7:
Calculating the concentrations of the species and the [tex]$\mathrm{pH}$[/tex] :
[tex]$\frac{(x)(x)}{0.00459-x}=6.4 \times 10^{-5}$[/tex]
[tex]$x^{2}+6.4 \times 10^{-5} \times-2.9 \times 10^{-7}=0$[/tex]
[tex]$a x^{2}+b x+c=0$[/tex]
Use the quadratic formula to calculate .
[tex]$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$[/tex]
[tex]$\mathrm{x}=5.1 \times 10^{-4}[/tex]
[tex]\mathrm{M}=\left[\mathrm{H}^{+}\right]=\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}_{2}^{-}\right]$[/tex]
[tex]$\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}_{2} \mathrm{H}\right]=0.00459-0.00051=4.1 \times 10^{-3} \mathrm{M}$[/tex]
[tex]$\left[\mathrm{OH}^{-}\right]=\frac{\mathrm{K}_{w}}{\left[\mathrm{H}^{+}\right]}=\frac{1.0 \times 10^{-14}}{5.1 \times 10^{-4}}=1.9 \times 10^{-11} \mathrm{M}$[/tex]
[tex]$\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]=-\log \left(5.1 \times 10^{-4}\right)=3.29$[/tex]
Thus we can say the results are:
[tex]$\left[\mathrm{H}^{+}\right]=\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}_{2}^{-}\right]=5.1 \times 10^{-4} \mathrm{M}$[/tex]
[tex]$\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}_{2} \mathrm{H}\right]=4.1 \times 10^{-3} \mathrm{M}$[/tex]
[tex]$\left[\mathrm{OH}^{-}\right]=1.9 \times 10^{-11} \mathrm{M}[/tex]
[tex]$\mathrm{pH}=3.29$[/tex]
To learn more about pH of the solution, refer:
- https://brainly.com/question/21289565