Respuesta :
Answer:
a) [tex]V=4\pi\int\limits^8_2 {x\sqrt{9-(x-5)^{2}}} \, dx [/tex]
b) [tex]V=20\pi\int\limits^3_{-3} {\sqrt{9-y^{2}}} \, dy [/tex]
c) [tex]V=90\pi ^{2} [/tex]
Explanation
In order to solve these problems, we must start by sketching a drawing of what the graph of the problem looks like, this will help us analyze the drawing better and take have a better understanding of the problem (see attached pictures).
a)
On part A we must build an integral for the volume of the torus by using the shell method. The shell method formula looks like this:
[tex]V=\int\limits^a_b {2\pi r y } \, dr[/tex]
Where r is the radius of the shell, y is the height of the shell and dr is the width of the wall of the shell.
So in this case, r=x so dr=dx.
y is given by the equation of the circle of radius 3 centered at (5,0) which is:
[tex](x-5)^{2}+y^{2}=9[/tex]
when solving for y we get that:
[tex]y=\sqrt{9-(x-5)^{2}}[/tex]
we can now plug all these values into the shell method formula, so we get:
[tex]V=\int\limits^8_2 {2\pi x \sqrt{9-(x-5)^{2}} } \, dx[/tex]
now there is a twist to this problem since that will be the formula for half a torus.Luckily for us the circle is symmetric about the x-axis, so we can just multiply this integral by 2 to get the whole volume of the torus, so the whole integral is:
[tex]V=\int\limits^8_2 {4\pi x \sqrt{9-(x-5)^{2}} } \, dx[/tex]
we can take the constants out of the integral sign so we get the final answer to be:
[tex]V=4\pi\int\limits^8_2 {x\sqrt{9-(x-5)^{2}}} \, dx [/tex]
b)
Now we need to build an integral equation of the torus by using the washer method. In this case the formula for the washer method looks like this:
[tex]V=\int\limits^b_a{\pi(R^{2}-r^{2})} \, dy [/tex]
where R is the outer radius of the washer and r is the inner radius of the washer and dy is the width of the washer.
In this case both R and r are given by the x-equation of the circle. We start with the equation of the circle:
[tex](x-5)^{2}+y^{2}=9[/tex]
when solving for x we get that:
[tex]x=\sqrt{9-y^{2}}+5[/tex]
the same thing happens here, the square root can either give you a positive or a negative value, so that will determine the difference between R and r, so we get that:
[tex]R=\sqrt{9-y^{2}}+5[/tex]
and
[tex]r=-\sqrt{9-y^{2}}+5[/tex]
we can now plug these into the volume formula:
[tex]V=\pi \int\limits^3_{-3}{(5+\sqrt{9-y^{2}})^{2}-(5-\sqrt{9-y^{2}})^{2}} \, dy [/tex]
This can be simplified by expanding the perfect squares and when eliminating like terms we end up with:
[tex]V=20\pi\int\limits^3_{-3} {\sqrt{9-y^{2}}} \, dy [/tex]
c) We are going to solve the integral we got by using the washer method for it to be easier for us to solve, so let's take the integral:
[tex]V=20\pi\int\limits^3_{-3} {\sqrt{9-y^{2}}} \, dy [/tex]
This integral can be solved by using trigonometric substitution so first we set:
[tex]y=3 sin \theta[/tex]
which means that:
[tex]dy=3 cos \theta d\theta[/tex]
from this, we also know that:
[tex]\theta=sin^{-1}(\frac{y}{3})[/tex]
so we can set the new limits of integration to be:
[tex]\theta_{1}=sin^{-1}(\frac{-3}{3})[/tex]
[tex]\theta_{1}=-\frac{\pi}{2}[/tex]
and
[tex]\theta_{2}=sin^{-1}(\frac{3}{3})[/tex]
[tex]\theta_{2}=\frac{\pi}{2}[/tex]
so we can rewrite our integral:
[tex]V=20\pi\int\limits^{\frac{\pi}{2}}_{-\frac{\pi}{2}} {\sqrt{9-(3 sin \theta)^{2}}} \, 3 cos \theta d\theta [/tex]
which simplifies to:
[tex]V=60\pi\int\limits^{\frac{\pi}{2}}_{-\frac{\pi}{2}} {(\sqrt{9-(3 sin \theta)^{2}}} \, cos \theta d\theta [/tex]
we can further simplify this integral like this:
[tex]V=60\pi\int\limits^{\frac{\pi}{2}}_{-\frac{\pi}{2}} {(\sqrt{9-9 sin^{2} \theta}}} \, cos \theta d\theta [/tex]
[tex]V=60\pi\int\limits^{\frac{\pi}{2}}_{-\frac{\pi}{2}} {3(\sqrt{1- sin^{2} \theta})}} \, cos \theta d\theta [/tex]
[tex]V=180\pi\int\limits^{\frac{\pi}{2}}_{-\frac{\pi}{2}} {(\sqrt{1- sin^{2} \theta})}} \, cos \theta d\theta [/tex]
[tex]V=180\pi\int\limits^{\frac{\pi}{2}}_{-\frac{\pi}{2}} {(\sqrt{cos^{2} \theta})}} \, cos \theta d\theta [/tex]
[tex]V=180\pi\int\limits^{\frac{\pi}{2}}_{-\frac{\pi}{2}} {(cos \theta})} \, cos \theta d\theta [/tex]
[tex]V=180\pi\int\limits^{\frac{\pi}{2}}_{-\frac{\pi}{2}} {cos^{2} \theta}} \, d\theta [/tex]
We can use trigonometric identities to simplify this so we get:
[tex]V=180\pi\int\limits^{\frac{\pi}{2}}_{-\frac{\pi}{2}} {\frac{1+cos 2\theta}{2}}} \, d\theta [/tex]
[tex]V=90\pi\int\limits^{\frac{\pi}{2}}_{-\frac{\pi}{2}} {1+cos 2\theta}}} \, d\theta [/tex]
we can solve this by using u-substitution so we get:
[tex]u=2\theta[/tex]
[tex]du=2d\theta[/tex]
and:
[tex]u_{1}=2(-\frac{\pi}{2})=-\pi[/tex]
[tex]u_{2}=2(\frac{\pi}{2})=\pi[/tex]
so when substituting we get that:
[tex]V=45\pi\int\limits^{\pi}_{-\pi} {1+cos u}} \, du [/tex]
when integrating we get that:
[tex]V=45\pi(u+sin u)\limit^{\pi}_{-\pi} [/tex]
when evaluating we get that:
[tex]V=45\pi[(\pi+0)-(-\pi+0)] [/tex]
which yields:
[tex]V=90\pi ^{2} [/tex]