if volume of a sphere is increasing at rate of 24 cubic inche per minute and surface area increaing 12 inches per minute what is radius

Respuesta :

Answer:

r= 4 in

Explanation:

Given that

[tex]\dfrac{dV}{dt}=24\ in^3/min[/tex]

[tex]\dfrac{dA}{dt}=12\ in^2/min[/tex]

The volume of the sphere

[tex]V=\dfrac{4}{3}\pi r^3[/tex]

[tex]\dfrac{dV}{dt}=4\pi r^2\dfrac{dr}{dt}[/tex]           ------------1

The surface area

A=4 πr²

[tex]\dfrac{dA}{dt}=8\pi r\dfrac{dr}{dt}[/tex]    

[tex]\dfrac{dA}{dt}=2\times 4\pi r\dfrac{dr}{dt}[/tex]               -----2

Form equation 1 and 2

[tex]\dfrac{dV}{dt}=r\times \dfrac{\dfrac{dA}{dt}}{2}[/tex]

24 x 2 = r x 12

r= 4 in

ACCESS MORE
EDU ACCESS
Universidad de Mexico