Respuesta :
Answer:
[tex]0.00048828125I_0[/tex]
Explanation:
[tex]I_0[/tex] = Unpolarized light intensity
[tex]\theta[/tex] = Angle = 60°
Intensity of light through first polarizer
[tex]I_1=\dfrac{I_0}{2}[/tex]
Intensity of light through nth polarizer
[tex]I=I_1(cos^2\theta)^{n-1}[/tex]
when
n = 6
[tex]I_6=\dfrac{I_0}{2}(cos^2(60))^{6-1}\\\Rightarrow I_6=0.00048828125I_0[/tex]
The intensity of light after passing through the sixth polarizer is [tex]0.00048828125I_0[/tex]
Answer:
0.0004883 Io
Explanation:
Let Io be the intensity of unpolarised light.
Intensity of light coming out from first polaroid.
I1 = Io / 2
According to law of Malus, the intensity of light coming from the n th polaroid is given by
[tex]I_{n}= I_{1}\left (Cos^{2}\theta \right )^{n-1}[/tex]
where, n be the number of polaroid and θ be the angle between two polaroid.
[tex]I_{6}= \frac{I_{0}}{2}\left (Cos^{2}60 \right )^{6-1}[/tex]
So, I6 = 0.0004883 Io
Thus, the intensity of light coming out from the sixth polaroid is 0.0004883 Io.