Respuesta :
Answer:
[tex]a=5.82\ m/s^2[/tex]
Explanation:
It is given that,
Angle of inclination of the sled, [tex]\theta=42^{\circ}[/tex]
The coefficient of kinetic friction on ice is, [tex]\mu_k=0.1[/tex]
Using the free body diagram, the magnitude of the acceleration of a sled that is heading down is given by :
[tex]ma=mg\ sin\theta-f[/tex]
f is the frictional force
[tex]ma=mg\ sin\theta-\mu mg cos\theta[/tex]
[tex]a=g\ sin\theta-\mu g cos\theta[/tex]
[tex]a=9.8\times \ sin(42)-0.1\times 9.8 cos(42)[/tex]
[tex]a=5.82\ m/s^2[/tex]
So, the magnitude of the acceleration of a sled is [tex]5.82\ m/s^2[/tex]. hence, this is the required solution.
Answer:
8.68 m/s^2
Explanation:
angle of inclination, θ = 42°
coefficient of friction, μ = 0.1
g = 9.8 m/s^2
the acceleration of the sled is
a = g Sin θ - μ g Cos θ
a = 9.8 (Sin 42 - 0.1 x Cos 42)
a = 9.8 (0.96 - 0.074)
a = 8.68 m/s^2
