In order to solve this problem it is necessary to apply the concepts related to Newton's second law and the respective representation of the Forces in their vector components.
The horizontal component of this force is given as
F_x = Fcos(6.7)
While the vertical component of this force would be
F_y = Fsin(6.7)
In the vertical component, the sum of Force indicates that:
[tex]\sum F_y= 0 [/tex]
The Normal Force would therefore be equivalent to the weight and vertical component of the applied force, therefore:
[tex]N = mg+Fsin(6.7)[/tex]
In the horizontal component we have that the Force of tension in its horizontal component is equivalent to the Force of friction:
[tex]\sum F_x = 0[/tex]
[tex]F_x = F_{friction}[/tex]
[tex]Fcos (6.7) = N\mu[/tex]
Using the previously found expression of the Normal Force and replacing it we have to,
[tex]Fcos(6.7)= \mu (mg+Fsin(6.7))[/tex]
Replacing,
[tex]Fcos(6.7)= (0.87) (mg+Fsin(6.7))[/tex]
[tex]Fcos(6.7) = (0.87)(mg) + (0.87)(Fsin(6.7))[/tex]
[tex]Fcos(6.7) -(0.87)(Fsin(6.7)) = 0.87 (mg)[/tex]
[tex]F(cos(6.7)-0.87sin(6.7)) = 0.87 (mg)[/tex]
[tex]F = \frac{0.87 (mg)}{(cos(6.7)-0.87sin(6.7))}[/tex]
[tex]F = \frac{0.87(128000*9.8)}{(cos(6.7)-0.87sin(6.7))}[/tex]
[tex]F = 1.95*10^6N[/tex]
Finally the acceleration would be by Newton's second law:
[tex]F = ma[/tex]
[tex]a = \frac{F}{m}[/tex]
[tex]a = \frac{ 1.95*10^6}{128000}[/tex]
[tex]a = 15.234m/s^2[/tex]
Therefore the greatest acceleration the man can give the airplane is [tex]15.234m/s^2[/tex]