Answer:
It will last for 161.70 months
Explanation:
we need to solve for n in an annuity-due
[tex]C \times \frac{1-(1+r)^{-time} }{rate} (1+rate)= PV\\[/tex]
C $1,350.00
time n
rate 9.25% annual -->0.0925/ 12 = 0.007708333
PV $125,500.0000
[tex]1350 \times \frac{1-(1+0.0077083)^{-n} }{0.0077083} (1+0.00770833)= 125500\\[/tex]
[tex](1+0.0077083)^{-n}= 1-\frac{125500\times0.0077083}{1350}(1.00770833)[/tex]
[tex](1+0.0077083)^{-n}= 0.29 [/tex]
[tex]-n= \frac{log0.288891951699477}{log(1+0.0077083)
-n = -161.7057904
n = 161.7057