Answer:
Bnet=1.006*10^-6T
Explanation:
One long wire lies along an x axis and carries a current of 43 A in the positive x direction. A second long wire is perpendicular to the xy plane, passes through the point (0, 5.9 m, 0), and carries a current of 41 A in the positive z direction. What is the magnitude of the resulting magnetic field at the point (0, 1.7 m, 0)?
the magnetic field Bnet=[tex]\sqrt{b1^2+b2^2}[/tex]
the magnetic field due this long wire is given by
B1=∨I1/[tex](2\pi *R1)[/tex]..............................1
B2=∨I2/[tex](2\pi *R2)[/tex]............................2
Bnet=[tex]\sqrt{(vI1/2*pi*R1)^2+(vI2/2*pi*R2)^2}[/tex].......................3
Bnet=v/2*pi[tex]\sqrt{(I1/R1)^2+(i2/R2)^2}[/tex]
Bnet=4*pi*10^-7/(2[tex]\pi[/tex])[tex]\sqrt{(43/1.7)^2+(41/29.5)^2}[/tex]
Bnet=0.0000002*(641.72)^.5
Bnet=1.006*10^-6T