Respuesta :
Answer:
Explanation:
Given
initial angular velocity [tex]\omega _0=558.2 rad/s[/tex]
Time taken to stop [tex]t=0.435 s[/tex]
using kinematic relation
[tex]\omega =\omega _0+\alpha \cdot t[/tex]
here [tex]\omega =[/tex]final angualr velocity is zero because it is coming to rest
[tex]\alpha =[/tex]angular acceleration
thus [tex]\alpha =-\frac{\omega _0}{t}[/tex]
[tex]\alpha =-\frac{558.2}{0.435}=-1283.21 rad/s^2[/tex]
Magnitude is 1283.21 rad/s
If the diameter of disk [tex]d=0.12 m[/tex]
then
radius [tex]r=0.06 m[/tex]
Linear acceleration is givenby [tex]\alpha \times r[/tex]
here radial distance is [tex]\frac{1}{11}[/tex] from center
thus [tex]r'=\frac{r}{11}=\frac{0.06}{11}=0.00545[/tex]
[tex]a_L=1283.21\times 0.00545=6.99 m/s^2[/tex]
Answer:
Explanation:
initial angular velocity, ωo = 558.2 rad/s
final angular velocity, ω = 0
time, t = 0.435 s
Use first equation of motion
ω = ωo + αt
where, α is the angular acceleration
0 = 558.2 + α x 0.435
α = - 1283.22 rad/s²
diameter of disc = 0.12 m
radius of disc, r = 0.06 m
distance, d = 0.06 / 11 m
linear acceleration, a = d x α = - 0.06 x 1283.22 / 11
a = - 7 m/s²