An optical disk drive in your computer can spin a disk up to 10,000 rpm (about 1045 rad / s). If a particular disk is spun at 558.2 rad / s while it is being read, and then is allowed to come to rest over 0.435 seconds, what is the magnitude of the average angular acceleration of the disk?


____rad/s^2




If the disk is 0.12 m in diameter, what is the magnitude of the linear acceleration of a point 1/11 of the way out from the center of the disk?


______m/s^2

Respuesta :

Answer:

Explanation:

Given

initial angular velocity [tex]\omega _0=558.2 rad/s[/tex]

Time taken to stop [tex]t=0.435 s[/tex]

using kinematic relation

[tex]\omega =\omega _0+\alpha \cdot t[/tex]

here [tex]\omega =[/tex]final angualr velocity is zero because it is coming to rest

[tex]\alpha =[/tex]angular acceleration

thus [tex]\alpha =-\frac{\omega _0}{t}[/tex]

[tex]\alpha =-\frac{558.2}{0.435}=-1283.21 rad/s^2[/tex]

Magnitude is 1283.21 rad/s

If the diameter of disk [tex]d=0.12 m[/tex]

then

radius [tex]r=0.06 m[/tex]

Linear acceleration is givenby [tex]\alpha \times r[/tex]

here radial distance is [tex]\frac{1}{11}[/tex] from center

thus [tex]r'=\frac{r}{11}=\frac{0.06}{11}=0.00545[/tex]

[tex]a_L=1283.21\times 0.00545=6.99 m/s^2[/tex]

             

Answer:

Explanation:

initial angular velocity, ωo = 558.2 rad/s

final angular velocity, ω = 0

time, t = 0.435 s

Use first equation of motion

ω = ωo + αt

where, α is the angular acceleration

0 = 558.2 + α x 0.435

α = - 1283.22 rad/s²

diameter of disc = 0.12 m

radius of disc, r = 0.06 m

distance, d = 0.06 / 11 m

linear acceleration, a = d x α = - 0.06 x 1283.22 / 11

a = - 7 m/s²

ACCESS MORE