Respuesta :
Answer:
The evaluated expressions are [tex]8!-6!=39600[/tex] , [tex]7!-5!=4920[/tex] and [tex]\frac{12!}{8!}=11880[/tex]
Step-by-step explanation:
The factorial of a positive integer n is the product of all positive integers less than or equal to n:
[tex]n!=n\times (n-1)\times (n-2)\times (n-3)\times ...\times 3\times 2\times 1[/tex]
The factorial of n is denoted by n!
Now to find the expressions 8!-6!, 7!-5!, and 12!/8! :
Given expression is 8!-6!:
[tex]8!-6!=[8\times (8-1)\times (8-2)\times (8-3)\times (8-4)\times (8-5)\times (8-6)\times (8-7)]- [6\times (6-1)\times (6-2)\times (6-3)\times (6-4)\times (6-5)] [/tex] (By using factorial of n formula)
[tex]=[8\times 7\times 6\times 5\times 4\times 3\times 2\times 1]- [6\times 5\times 4\times 3\times 2\times 1][/tex]
[tex]=[6\times 5\times 4\times 3\times 2\times 1][(8\times 7)-1][/tex]
[tex]=[720][56-1][/tex]
[tex]=[720][55][/tex]
[tex]=39600[/tex]
Therefore [tex]8!-6!=39600[/tex]
Given expression is 7!-5! :
[tex]7!-5!=[7\times (7-1)\times (7-2)\times (7-3)\times (7-4)\times (7-5)\times (7-6)]-[5\times (5-1)\times (5-2)\times (5-3)\times (5-4)][/tex] (By using factorial of n formula)
[tex]=[7\times 6\times 5\times 4\times 3\times 2\times 1]- [5\times 4\times 3\times 2\times 1][/tex]
[tex]=[5\times 4\times 3\times 2\times 1][(7\times 6)-1][/tex]
[tex]=[120][42-1][/tex]
[tex]=[120][41][/tex]
[tex]=4920[/tex]
Therefore [tex]7!-5!=4920[/tex]
Given expression is [tex]\frac{12!}{8!}[/tex]
[tex]\frac{12!}{8!}=\frac{12\times (12-1)\times (12-2)\times (12-3)\times (12-4)\times (12-5)\times (12-6)\times(12-7)\times (12-8)\times (12-9)\times (12-10) \times(12-11)}{8\times (8-1)\times (8-2)\times (8-3)\times (8-4)\times(8-5)\times (8-6)\times (8-7)}[/tex] (By using factorial of n formula)
[tex]=\frac{12\times 11\times 10\times 9\times 8\times 7\times 6\times 5\times4\times 3\times 2\times 1}{8\times 7\times 6\times 5\times4\times 3\times 2\times 1}[/tex]
[tex]=12\times 11\times 10\times 9[/tex]
[tex]=11880[/tex]
Therefore [tex]\frac{12!}{8!}=11880[/tex]