Answer:
[tex]h'(1)=-6\pi[/tex]
Step-by-step explanation:
Given:
The values of [tex]f(x),f'(x),g(x)\ and\ g'(x)[/tex] are given as:
[tex]f(1)=8,f(2)=3\\\\g(1)=2,g(2)=-4\\\\f'(1)=\frac{1}{3},f'(2)=2\pi\\\\g'(1)=-3,g'(2)=5[/tex]
[tex]h(x)=f(g(x))[/tex]
Differentiating both sides with respect to 'x'. This gives,
[tex]h'(x)=f'(g(x))\times g'(x)[/tex]
Now, in order to find [tex]h'(1)[/tex], plug in 1 for 'x'. This gives,
[tex]h'(1)=f'(g(1))\times g'(1)[/tex]
Now, plug in [tex]g(1)=2,g'(1)=-3[/tex]
[tex]h'(1)=f'(2)\times -3[/tex]
Now, plug in [tex]f'(2)=2\pi[/tex]
[tex]h'(1)=2\pi\times -3\\\\h'(1)=-6\pi[/tex]
Hence, the value of [tex]h'(1)[/tex] is [tex]-6\pi[/tex].