contestada

Suppose the functions f and g and their derivatives have the following values at x=1 and x=2. Let h(x) = f(g(x)), Evaluate h'(1).

Follow steps of video:https://www.khanacademy.org/math/ap-calculus-ab/ab-differentiation-2-new/ab-3-1b/v/chain-rule-example-implicit

Answer should be -6pi

Suppose the functions f and g and their derivatives have the following values at x1 and x2 Let hx fgx Evaluate h1Follow steps of videohttpswwwkhanacademyorgmath class=

Respuesta :

Answer:

[tex]h'(1)=-6\pi[/tex]

Step-by-step explanation:

Given:

The values of [tex]f(x),f'(x),g(x)\ and\ g'(x)[/tex] are given as:

[tex]f(1)=8,f(2)=3\\\\g(1)=2,g(2)=-4\\\\f'(1)=\frac{1}{3},f'(2)=2\pi\\\\g'(1)=-3,g'(2)=5[/tex]

[tex]h(x)=f(g(x))[/tex]

Differentiating both sides with respect to 'x'. This gives,

[tex]h'(x)=f'(g(x))\times g'(x)[/tex]

Now, in order to find [tex]h'(1)[/tex], plug in 1 for 'x'. This gives,

[tex]h'(1)=f'(g(1))\times g'(1)[/tex]

Now, plug in [tex]g(1)=2,g'(1)=-3[/tex]

[tex]h'(1)=f'(2)\times -3[/tex]

Now, plug in [tex]f'(2)=2\pi[/tex]

[tex]h'(1)=2\pi\times -3\\\\h'(1)=-6\pi[/tex]

Hence, the value of [tex]h'(1)[/tex] is [tex]-6\pi[/tex].

RELAXING NOICE
Relax