Answer:
0.45 m/s in the negative x-direction
Explanation:
From the law of conservation of momentum, the sum of initial momentum equals the sum of final momentum
Momentum, p=mv where m is the mass and v is the velocity
[tex]m_1v_1+m_2v_2=(m_1+m_2)v_c[/tex] where [tex]v_c[/tex] is the common velocity, [tex]v_1[/tex] and [tex]v_2[/tex] are velocities of magnet moving in positive x-direction and magnet moving in negative x-direction respectively, [tex]m_1[/tex] and [tex]m_2[/tex] are masses of magnet moving in positive x-direction and magnet moving in negative x-direction respectively.
Substituting 125 g for [tex]m_1[/tex] and 85 g for [tex]m_2[/tex], 7.33 m/s [tex]v_1[/tex], -11.9 m/s for [tex]v_1[/tex] then
[tex]125 g\times 7.33 m/s + (85 g\times -11.9)=(125 g+ 85 g)\times v_c[/tex]
[tex]-95.25 g. m/s=210 g v_c[/tex]
[tex]v_c=\frac {-95.25 g.m/s}{210 g}=-0.453571429 m/s \approx -0.45 m/s[/tex]
Therefore, the velocity of single unit is 0.45 m/s in the negative x-direction