Answer: c. -2.15
Step-by-step explanation:
As per given we have:
Null hypothesis : [tex]H_{a}: p\geq0.80[/tex]
Alternative hypothesis : [tex]H_{a}: p<0.80[/tex]
let p be the proportion of firms in the manufacturing sector offer child-care benefits
A random sample of 390 manufacturing firms is selected and 295 of them offered child-care benefits.
sample size : n= 390
sample proportion : [tex]\hat{p}=\dfrac{295}{390}=0.7564[/tex]
Test statistic for proportion :
[tex]z=\dfrac{\hat{p}-p}{\sqrt{\dfrac{p(1-p)}{n}}}[/tex]
Substitute the values , we get
[tex]z=\dfrac{0.7564-0.80}{\sqrt{\dfrac{0.80(1-0.80)}{ 390}}}[/tex]
[tex]z=\dfrac{-0.0436}{\sqrt{0.000410256410256}}[/tex]
[tex]z=-2.15257752474\approx-2.15[/tex]
Hence, the value of test statistic = -2.15
Correct option is c. -2.15 .