Respuesta :
Answer:
So the ratio will be [tex]\frac{T_L}{T_H}=-0.171[/tex]
Explanation:
We have given heat engine absorbs 450 joule from high temperature reservoir
So [tex]Q=450j[/tex]
As the heat engine expels 290 j
So work done W = 290 J
We know that efficiency [tex]\eta =\frac{W}{Q}=\frac{290}{450}=0.6444[/tex]
It is given that efficiency of the engine only 55 % of Carnot engine
So efficiency of Carnot engine [tex]=\frac{0.6444}{0.55}=1.171[/tex]
Efficiency of Carnot engine is [tex]\eta =1-\frac{T_L}{T_H}[/tex]
[tex]1.171 =1-\frac{T_L}{T_H}[/tex]
[tex]\frac{T_L}{T_H}=-0.171[/tex]
Answer:
0.64
Explanation:
QH = 450 J
Qc = 290 J
efficiency, η = 55 %
Let Tc be the low temperature and TH be the high temperature.
According to the Carnot's theorem
[tex]\frac{T_{c}}{T_{H}}=\frac{Q_{c}}{Q_{H}}[/tex]
[tex]\frac{T_{c}}{T_{H}}=\frac{290}{450}=0.64[/tex]
So, the ratio is 0.64.