Respuesta :
Answer:
It is high likely that the filling operation is capale of meeting design specifications.
Step-by-step explanation:
Problems of normally distributed samples can be solved using the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the zscore of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
In this problem, we have that:
[tex]\mu = 355, \sigma = 2[/tex]
Is the filling operation capable of meeting the design specifications?
It will be capable if it is highly likely that the specifications will be met. A probability is said to be high likely when it is of at least 95%.
In this case, the probability of containing between 350 and 360 ml of liquid is the pvalue of Z when X = 360 subtracted by the pvalue of Z when X = 350.
X = 360
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]Z = \frac{360 - 355}{2}[/tex]
[tex]Z = 2.5[/tex]
[tex]Z = 2.5[/tex] has a pvalue of 0.9938.
X = 350
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]Z = \frac{350 - 355}{2}[/tex]
[tex]Z = -2.5[/tex]
[tex]Z = -2.5[/tex] has a pvalue of 0.0062.
This means that there is a 0.9938 - 0.0062 = 0.9876 = 98.76% probability that the filling operation is capable of meeting the design specifications. It is high likely that the filling operation is capale of meeting design specifications.