Respuesta :
Answer:
8563732.58906 Pa
3992793.23326 Pa
5708.00923 J
Explanation:
V = Volume
N = Number of molecules = [tex]3\times 6.023\times 10^{23}[/tex]
T = Temperature = 300 K
b = [tex]7\times 10^{-29}\ m^3[/tex]
[tex]k_[/tex] = Boltzmann constant = [tex]1.38\times 10^{-23}\ J/K[/tex]
P = Pressure
We have the equation
[tex]P(V-Nb)=NkT\\\Rightarrow P=\dfrac{NkT}{V-Nb}\\\Rightarrow P=\dfrac{3\times 6.023\times 10^{23}\times 1.38\times 10^{-23}\times 300}{0.001-3\times 6.023\times 10^{23}\times 7\times 10^{-29}}\\\Rightarrow P=8563732.58906\ Pa[/tex]
The pressure is 8563732.58906 Pa
For isothermal expansion
[tex]P_1(V_1-Nb)=P_2(V_2-Nb)\\\Rightarrow P_2=\dfrac{P_1(V_1-Nb)}{V_2-Nb}\\\Rightarrow P_2=\dfrac{8563732.58906(0.001-3\times 6.023\times 10^{23}\times 7\times 10^{-29})}{0.002-3\times 6.023\times 10^{23}\times 7\times 10^{-29}}\\\Rightarrow P_2=3992793.23326\ Pa[/tex]
The pressure is 3992793.23326 Pa
Work done is given by
[tex]dw=Pdv\\\Rightarrow W=\int_{v_1}^{v_2}\dfrac{NkT}{V-Nb}dv\\\Rightarrow W=NkTln\dfrac{V_2-Nb}{V_1-Nb}\\\Rightarrow W=3\times 6.023\times 10^{23}\times 1.38\times 10^{-23}\times 300ln\dfrac{0.002-3\times 6.023\times 10^{23}\times 7\times 10^{-29}}{0.001-3\times 6.023\times 10^{23}\times 7\times 10^{-29}}\\\Rightarrow W=5708.00923\ J[/tex]
The work done is 5708.00923 J
The initial pressure, final pressure and work done in the isothermal expansion are respectively; 8563.733 kPa, 3992.793 kPa and 5708 J
What is the pressure in isothermal expansion?
1) The formula to find the initial pressure is;
P = NkT/(V - Nb)
where;
N is number of molecules = 3 * 6.023 * 10²³
T is temperature = 300 K
b = 7 × 10⁻²⁹ m³
V is volume = 0.001 m³
k is Boltzmann constant = 1.38 * 10⁻²³ J/K
Thus;
P = (3 * 6.023 * 10²³ * 1.38 * 10⁻²³ * 300)/(0.001 - (3 * 6.023 * 10²³ * 1.38 * 10⁻²³))
P_initial = 8563.733 kPa
2) The formula to get the final pressure in Isothermal Expansion is;
P_final = (P_initial * (V₁ - Nb))/(V₂ - Nb)
P_final = (8563.733 * (0.001 - (3 * 6.023 * 10²³ * 1.38 * 10⁻²³))/(0.002 - (3 * 6.023 * 10²³ * 1.38 * 10⁻²³))
P_final = 3992.793 kPa
3) The workdone is gotten from the formula;
W = NkT In [(V₂ - Nb)/(V₁ - Nb)]
Plugging in the relevant values and solving gives us;
W = 5708 J
Read more about Isothermal Expansion at; https://brainly.com/question/17192821