Answer:
[tex]\frac{1}{-9}tan \frac{1}{x^9} + c[/tex]
Step-by-step explanation:
The question requires addition information. Below is how the question should be rightly stated.
[tex]\int\limits {\frac{sec^{2}(\frac{1}{x^9})}{ x^{10} } } \, dx[/tex] ------(1)
Using substitution method,
We are given [tex]u =\frac{1}{x^{9}}[/tex] -------(2)
⇒ [tex]u =x^{-9}[/tex]
Differentiating u with respect to x,
[tex]\frac{du}{dx} = -9x^{-9-1}[/tex]
[tex]\frac{du}{dx} = -9x^{-10}[/tex]
Making dx the subject of the equation
[tex]dx =\frac{du}{-9x^{-10}}[/tex]
[tex]dx =\frac{x^{10}du}{-9}[/tex] ---------(3)
Substituting the values of u from equation (2) and dx from equation (3) into equation (1)
[tex]\int\limits {\frac{sec^{2}u}{x^{10}}} . \frac{x^{10}}{-9} \, du[/tex]
[tex]\int\limits {\frac{sec^{2}u}{-9}} \, du[/tex]
[tex]\frac{1}{-9}\int\limits {sec^{2}u \, du[/tex]
[tex]\frac{1}{-9}tanu + c[/tex]
substituting the value of u
[tex]\frac{1}{-9}tan \frac{1}{x^9} + c[/tex]