Respuesta :

Answer:

[tex]\frac{1}{-9}tan \frac{1}{x^9} + c[/tex]

Step-by-step explanation:

The question requires addition information. Below is how the question should be rightly stated.

        [tex]\int\limits {\frac{sec^{2}(\frac{1}{x^9})}{ x^{10} } } \, dx[/tex]   ------(1)

Using substitution method,

We are given [tex]u =\frac{1}{x^{9}}[/tex]                   -------(2)

                      ⇒ [tex]u =x^{-9}[/tex]

Differentiating u with respect to x,

                      [tex]\frac{du}{dx} = -9x^{-9-1}[/tex]

                      [tex]\frac{du}{dx} = -9x^{-10}[/tex]

Making dx the subject of the equation

                      [tex]dx =\frac{du}{-9x^{-10}}[/tex]

                      [tex]dx =\frac{x^{10}du}{-9}[/tex]                         ---------(3)

Substituting the values of u from equation (2) and dx from equation (3) into equation (1)

                      [tex]\int\limits {\frac{sec^{2}u}{x^{10}}} . \frac{x^{10}}{-9} \, du[/tex]

                      [tex]\int\limits {\frac{sec^{2}u}{-9}} \, du[/tex]

                      [tex]\frac{1}{-9}\int\limits {sec^{2}u \, du[/tex]

                      [tex]\frac{1}{-9}tanu + c[/tex]

substituting the value of u

                      [tex]\frac{1}{-9}tan \frac{1}{x^9} + c[/tex]

 

ACCESS MORE