Respuesta :

The slope of given coordinates (0,-2) and (2,-1) is [tex]\frac{1}{2}[/tex]

The slope intercept form is [tex]y = \frac{1}{2}x -2[/tex]

Solution:

Given that the coordinates are (0,-2) and (2,-1)

To find: slope and slope intercept form

The slope of line is given as:

For a line containing two points [tex](x_1 , y_1)[/tex] and [tex](x_2, y_2)[/tex] , slope of line is given as:

[tex]{m}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}[/tex]

Here in this problem,

coordinates are (0,-2) and (2,-1)

[tex]x_{1}=0 ; y_{1}=-2 ; x_{2}=2 ; y_{2}=-1[/tex]

Substituting the values in above formula,

[tex]m=\frac{-1-(-2)}{2-0}=\frac{-1+2}{2}=\frac{1}{2}[/tex]

Thus slope of line is [tex]\frac{1}{2}[/tex]

To find slope intercept form:

The slope intercept form is given as:

y = mx + b

Where "m" is the slope of line and "b" is the y-intercept

Substitute [tex]m = \frac{1}{2}[/tex] and (x, y) = (0, -2) in above slope intercept we get,

[tex]-2 = \frac{1}{2} \times 0 + b[/tex]

b = -2

Thus the required slope intercept is given as:

Substitute [tex]m = \frac{1}{2}[/tex] and b = -2 in slope intercept form,

[tex]y = \frac{1}{2}x -2[/tex]

Thus the slope intercept form is found

ACCESS MORE