The deepest point in any ocean is in the Mariana Trench, which is about 11 km deep, in the Pacific. The pressure at this depth is huge, about 1.13 108 N/m2. (Take the bulk modulus of seawater to be 2.34 109 N/m2) (a) Calculate the change in volume of 0.9 m3 of seawater carried from the surface to this deepest point. (b) The density of seawater at the surface is 1.03 103 kg/m3. Find its density at the bottom

Respuesta :

Answer:

a)  ΔV = - 4.346 10⁻² , b)   ρ’= 1.082 10³ kg / m³

Explanation:

The volume module is defined as the ratio of the pressure and the unit deformation, with a negative sign, for the module to be positive

       B = - P / (ΔV/V)

a) The ΔV volume change

     ΔV/V = -P / B

     ΔV = - P V / B

     ΔV = - 1.13 10⁸ 0.9 /2.34 10⁹

     ΔV = - 4.346 10⁻²

b) Density at the bottom of the sea

On the surface

     ρ = m / V

      m = ρ V

     m = 1.03 10³ 0.9

     m = 0.927 10³ kg

Body mass does not change with depth

Deep down

    ρ’= m / V’

    ΔV = 4.346 10⁻²

    [tex]V_{f}[/tex]- V₀ = 4,346 10⁻²

    [tex]V_{f}[/tex] = 0.0436 + Vo

    [tex]V_{f}[/tex]= -0.04346 + 0.9

    [tex]V_{f}[/tex] = 0.85654 m³

    ρ’= 0.927 10³ / 0.85654

    ρ’= 1.082 10³ kg / m³

ACCESS MORE