Respuesta :
According to the general equation for conditional probability, if P(ANB) = 3/10 and P(B)= 3/5, then P(A I B) is [tex]\frac{1}{2}[/tex]
Solution:
Given that, According to the general equation for conditional probability,
[tex]P( A \cap B) = \frac{3}{10}[/tex]
[tex]P(B) = \frac{3}{5}[/tex]
We need to find [tex]P(A | B)[/tex]
The required formula is:
[tex]P(A | B)=\frac{P(A\cap B)}{P(B)}[/tex]
Substituting the values,
[tex]\begin{aligned}&P(A | B)=\frac{\frac{3}{10}}{\frac{3}{5}}\\\\&P(A | B)=\frac{3}{10} \times \frac{5}{3}=\frac{1}{2}\end{aligned}[/tex]
[tex]\text{ Thus } P(A | B) = \frac{1}{2}[/tex]