Respuesta :

According to the general equation for conditional probability, if P(ANB) = 3/10  and P(B)= 3/5, then P(A I B) is [tex]\frac{1}{2}[/tex]

Solution:

Given that, According to the general equation for conditional probability,

[tex]P( A \cap B) = \frac{3}{10}[/tex]

[tex]P(B) = \frac{3}{5}[/tex]

We need to find [tex]P(A | B)[/tex]

The required formula is:

[tex]P(A | B)=\frac{P(A\cap B)}{P(B)}[/tex]

Substituting the values,

[tex]\begin{aligned}&P(A | B)=\frac{\frac{3}{10}}{\frac{3}{5}}\\\\&P(A | B)=\frac{3}{10} \times \frac{5}{3}=\frac{1}{2}\end{aligned}[/tex]

[tex]\text{ Thus } P(A | B) = \frac{1}{2}[/tex]

Answer:3/4

Step-by-step explanation:

ACCESS MORE