Respuesta :
Answer:
[tex]b_{11}=9,b_{12}=-2,b_{13}=3,b_{21}=2,b_{22}=17,b_{23}=0,b_{31}=3,b_{32}=22,b_{33}=8[/tex]
Step-by-step explanation:
Consider the given matrix
[tex]A=\left[\begin{array}{ccc}9&-2&3\\2&17&0\\3&22&8\end{array}\right][/tex]
Let matrix B is
[tex]B=\left[\begin{array}{ccc}b_{11}&b_{12}&b_{13}\\b_{21}&b_{22}&b_{23}\\b_{31}&b_{32}&b_{33}\end{array}\right][/tex]
It is given that
[tex]A=B[/tex]
[tex]\left[\begin{array}{ccc}9&-2&3\\2&17&0\\3&22&8\end{array}\right]=\left[\begin{array}{ccc}b_{11}&b_{12}&b_{13}\\b_{21}&b_{22}&b_{23}\\b_{31}&b_{32}&b_{33}\end{array}\right][/tex]
On comparing corresponding elements of both matrices, we get
[tex]b_{11}=9,b_{12}=-2,b_{13}=3[/tex]
[tex]b_{21}=2,b_{22}=17,b_{23}=0[/tex]
[tex]b_{31}=3,b_{32}=22,b_{33}=8[/tex]
Therefore, the required values are [tex]b_{11}=9,b_{12}=-2,b_{13}=3,b_{21}=2,b_{22}=17,b_{23}=0,b_{31}=3,b_{32}=22,b_{33}=8[/tex].
Answer:
b11 =
9
b12 =
-2
b13 =
3
b21 =
2
b22 =
17
b23 =
0
b31 =
3
b32 =
22
b33 =
8