Given matrix A below, and that A = B, find the value of the elements in B. A = 9 −2 3 2 17 0 3 22 8 b11 = b12 = b13 = b21 = b22 = b23 = b31 = b32 = b33 =

Respuesta :

Answer:

[tex]b_{11}=9,b_{12}=-2,b_{13}=3,b_{21}=2,b_{22}=17,b_{23}=0,b_{31}=3,b_{32}=22,b_{33}=8[/tex]

Step-by-step explanation:

Consider the given matrix

[tex]A=\left[\begin{array}{ccc}9&-2&3\\2&17&0\\3&22&8\end{array}\right][/tex]

Let matrix B is

[tex]B=\left[\begin{array}{ccc}b_{11}&b_{12}&b_{13}\\b_{21}&b_{22}&b_{23}\\b_{31}&b_{32}&b_{33}\end{array}\right][/tex]

It is given that

[tex]A=B[/tex]

[tex]\left[\begin{array}{ccc}9&-2&3\\2&17&0\\3&22&8\end{array}\right]=\left[\begin{array}{ccc}b_{11}&b_{12}&b_{13}\\b_{21}&b_{22}&b_{23}\\b_{31}&b_{32}&b_{33}\end{array}\right][/tex]

On comparing corresponding elements of both matrices, we get

[tex]b_{11}=9,b_{12}=-2,b_{13}=3[/tex]

[tex]b_{21}=2,b_{22}=17,b_{23}=0[/tex]

[tex]b_{31}=3,b_{32}=22,b_{33}=8[/tex]

Therefore, the required values are [tex]b_{11}=9,b_{12}=-2,b_{13}=3,b_{21}=2,b_{22}=17,b_{23}=0,b_{31}=3,b_{32}=22,b_{33}=8[/tex].

Answer:

b11 =  

9

b12 =  

-2

b13 =  

3

b21 =  

2

b22 =  

17

b23 =  

0

b31 =  

3

b32 =  

22

b33 =  

8

ACCESS MORE