Answer:
The value of A = [tex]\dfrac{1}{16}[/tex]
The value of B = [tex]\dfrac{1}{16}[/tex]
The value of C = [tex]\dfrac{25}{16}[/tex]
The value of D = [tex]\dfrac{5}{4}[/tex]
Step-by-step explanation:
Given as :
The following relations are as
[tex]\dfrac{d}{5}[/tex] =4 A ...........1
d = 20 B ...........2
d = [tex]\dfrac{4}{5}[/tex] C ...........3
And d = [tex]\dfrac{5}{4}[/tex]
Now, From the above relations
Put the value of d in eq 1
∵ 4 A = [tex]\dfrac{d}{5}[/tex]
So, d = 5 × 4 A
Or, [tex]\dfrac{5}{4}[/tex] = 20 A
∴ A = [tex]\frac{\frac{5}{4}}{20}[/tex] = [tex]\dfrac{1}{16}[/tex]
I.e The value of A = [tex]\dfrac{1}{16}[/tex]
Again
From eq 2
∵ d = 20 B
Put the value of d
So, [tex]\dfrac{5}{4}[/tex] = 20 B
Or, B = [tex]\frac{\frac{5}{4}}{20}[/tex]
∴ B = [tex]\dfrac{1}{16}[/tex]
I.e The value of B = [tex]\dfrac{1}{16}[/tex]
Similarly
From eq 3
d = [tex]\dfrac{4}{5}[/tex] C
Put the value of d
So, [tex]\dfrac{5}{4}[/tex] = [tex]\dfrac{4}{5}[/tex] C
Or, C = [tex]\frac{5\times 5}{4\times 4}[/tex]
∴ C = [tex]\dfrac{25}{16}[/tex]
I.e The value of C = [tex]\dfrac{25}{16}[/tex]
Hence The value are
The value of A = [tex]\dfrac{1}{16}[/tex]
The value of B = [tex]\dfrac{1}{16}[/tex]
The value of C = [tex]\dfrac{25}{16}[/tex]
The value of D = [tex]\dfrac{5}{4}[/tex]
Answer