Respuesta :

Answer:

The value of A =  [tex]\dfrac{1}{16}[/tex]

The value of B = [tex]\dfrac{1}{16}[/tex]

The value of C =  [tex]\dfrac{25}{16}[/tex]

The value of D =  [tex]\dfrac{5}{4}[/tex]

Step-by-step explanation:

Given as :

The following relations are as

[tex]\dfrac{d}{5}[/tex] =4 A           ...........1

d = 20 B                                       ...........2

d = [tex]\dfrac{4}{5}[/tex] C           ...........3

And d = [tex]\dfrac{5}{4}[/tex]

Now, From the above relations

Put the value of d in eq 1

∵ 4 A = [tex]\dfrac{d}{5}[/tex]

So, d = 5 × 4 A

Or, [tex]\dfrac{5}{4}[/tex] = 20 A

∴ A = [tex]\frac{\frac{5}{4}}{20}[/tex] = [tex]\dfrac{1}{16}[/tex]

I.e The value of A =  [tex]\dfrac{1}{16}[/tex]

Again

From eq 2

∵ d = 20 B

Put the value of d

So, [tex]\dfrac{5}{4}[/tex]  = 20 B

Or, B = [tex]\frac{\frac{5}{4}}{20}[/tex]

∴ B = [tex]\dfrac{1}{16}[/tex]

I.e The value of B = [tex]\dfrac{1}{16}[/tex]

Similarly

From eq 3

d = [tex]\dfrac{4}{5}[/tex] C  

Put the value of d

So, [tex]\dfrac{5}{4}[/tex] =  [tex]\dfrac{4}{5}[/tex] C    

Or, C = [tex]\frac{5\times 5}{4\times 4}[/tex]

∴ C = [tex]\dfrac{25}{16}[/tex]

I.e The value of C =  [tex]\dfrac{25}{16}[/tex]

Hence The value are

The value of A =  [tex]\dfrac{1}{16}[/tex]

The value of B = [tex]\dfrac{1}{16}[/tex]

The value of C =  [tex]\dfrac{25}{16}[/tex]

The value of D =  [tex]\dfrac{5}{4}[/tex]

Answer

ACCESS MORE