Respuesta :
Answer:
A. 630mL
Explanation:
The combined gas law says:
P₁V₁/T₁ = P₂V₂/T₂
Where P₁ is 2,4 atm; V₁ is 250mL; T₁ is 15+273,15 = 288,15K; P₂ is 1,0 atm; V₂ is the final volume; T₂ is 27°C; 27+273,15 = 300,15K.
Thus:
2,4atm×250mL/288,15K = 1,0atm×V₂/300,15K
V₂ = 625mL ≈ A. 630mL
I hope it helps!
Answer:
[tex]\large \boxed{\text{A. 620mL}}[/tex]
Explanation:
We can use the Combined Gas Laws to solve this problem
Data
p₁ = 2.4 atm; p₂ = 1.0 atm
V₁ = 250 mL; V₂ = ?
T₁ = 15°C; T₂ = 27 °C
Calculations
(a) Convert the temperatures to kelvins
T₁ = (15 + 273.15) K = 288.15 K
T₂ = (27 + 273.15) K = 300.15 K
(b) Calculate the new volume
[tex]\begin{array}{rcl}\dfrac{p_{1}V_{1} }{T_{1}} & = & \dfrac{p_{2}V_{2}}{T_{2}}\\\\\dfrac{\text{2.4 atm $\times$ 250 mL}}{\text{288.15 K}} & = & \dfrac{\text{1.0 atm} \times V_{2}}{\text{300.15 K}}\\\\\text{2.08 mL} & = & \dfrac{V_{2}}{300.15}\\\\V_{2} & = & \textbf{620 mL}\\\end{array}\\\text{The volume of the bubble when it reaches the surface is $\large \boxed{\textbf{620 mL}}$}[/tex]