Answer: 0.0055
Step-by-step explanation:
Let [tex]\overline{x}[/tex] denotes the sample mean amount that can has.
We assume that cans of Coke are filled so that the actual amounts are normally distributed with a mean of 12.00 oz and a standard deviation of 0.1 oz.
i.e. [tex]\mu=12[/tex] and [tex]\sigma=0.1[/tex]
sample size : n= 8
Then, the probability that a sample of 88 cans will have a mean amount of at least 12.09:
[tex]P(\overline{x}\geq12.09)=1-P(\overline{x}<12.09)\\\\=1-P(\dfrac{\overline{x}-\mu}{\dfrac{\sigma}{\sqrt{n}}}<\dfrac{12.09-12}{\dfrac{0.1}{\sqrt{8}}})\\\\=1-P(z<2.5456)\ \ [\because z=\dfrac{\overline{x}-\mu}{\dfrac{\sigma}{\sqrt{n}}}]\\\\=1-0.9945\ \ [\text{By z-table}]\\\\=0.0055[/tex]
Hence, the required sample size = 0.0055