Respuesta :
Answer:
a) C(1,000)=288,491.11 $
b) c(1,000)=288.49 $/u
c) dC/dx(1,000)=349.74 $/u
d) x=100 u
e) c=220 $/u
Step-by-step explanation:
(a) Find the total cost at a production level of 1000 units.
[tex]C(x) = 2,000 + 160x + 4x^{3/2}\\\\C(1,000)=2,000 + 160(1,000) + 4(1,000)^{3/2}\\\\C(1,000)=2,000+160,000+126,491.11= 288,491.11[/tex]
(b) Find the average cost at a production level of 1000 units.
[tex]c(x)=C(x)/x\\\\c(1,000)=C(1,000)/1,000=288,491.11/1,000=288.49[/tex]
(c) Find the marginal cost at a production level of 1000 units.
[tex]\frac{dC}{dx} =0+160+4*(3/2)x^{3/2-1}=160+6x^{1/2}\\\\dC/dx|_{1,000}=160+6*(1,000)^{1/2}=160+189.74=349.74[/tex]
(d) Find the production level that will minimize the average cost.
[tex]c=2,000x^{-1}+160+4x^{1/2}\\\\dc/dx=2,000(-1)x^{-2}+0+4(1/2)x^{-1/2}=0\\\\-2,000x^{-2}+2x^{-1/2}=0\\\\2x^{-1/2}=2,000x^{-2}\\\\x^{-1/2+2}=1,000\\\\x^{3/2}=1,000\\\\x=1,000^{2/3}=100[/tex]
(e) What is the minimum average cost?
[tex]c(x) = 2,000/x + 160 + 4x^{1/2}\\\\C(100)=2,000/100 + 160 + 4(100)^{1/2}=20+160+40=220[/tex]
Cost functions are used to predict costs based on certain parameters.
- The total cost at a production level of 1000 units is $288491.11
- The average cost at a production level of 1000 units is $288.49
- The marginal cost at a production level of 1000 units is $349.74
- The production level that will minimize the average cost is 100
- The minimum average cost is $220
The cost function is given as:
[tex]\mathbf{C(x) = 2000 + 160x + 4x^\frac{3}{2}}[/tex]
(a) The total cost at a production level of 1000 units
This means that, x = 1000
So, we have:
[tex]\mathbf{C(1000) = 2000 + 160 \times 1000 + 4 \times 1000^\frac{3}{2}}[/tex]
[tex]\mathbf{C(1000) = 288491.11}[/tex]
The total cost at a production level of 1000 units is $288491.11
(b) The average cost at a production level of 1000 units
This is calculated as:
[tex]\mathbf{Average = \frac{Total}{Units}}[/tex]
So, we have:
[tex]\mathbf{Average = \frac{C(1000)}{1000}}[/tex]
Substitute [tex]\mathbf{C(1000) = 288491.11}[/tex]
[tex]\mathbf{Average = \frac{288491.11}{1000}}[/tex]
[tex]\mathbf{Average = 288.49111}[/tex]
The average cost at a production level of 1000 units is $288.49
(c) The marginal cost at a production level of 1000 units
We start by differentiating the cost function
[tex]\mathbf{C(x) = 2000 + 160x + 4x^\frac{3}{2}}[/tex]
So, we have:
[tex]\mathbf{C'(x) = 0 + 160 + \frac 32 \times 4x^{\frac{3}{2} - 1}}[/tex]
[tex]\mathbf{C'(x) = 160 + \frac 32 \times 4x^{\frac{1}{2} }}[/tex]
[tex]\mathbf{C'(x) = 160 + 6x^{\frac{1}{2} }}[/tex]
Substitute, x = 1000
[tex]\mathbf{C'(1000) = 160 + 6 \times 1000^{\frac{1}{2} }}[/tex]
[tex]\mathbf{C'(1000) = 349.736 }}[/tex]
The marginal cost at a production level of 1000 units is $349.74
(d) The production level of that minimizes the average cost
The average cost is calculated as:
[tex]\mathbf{Average = \frac{Total}{Units}}[/tex]
So, we have:
[tex]\mathbf{A(x) = \frac{2000 + 160x + 4x^\frac{3}{2}}{x}}[/tex]
Rewrite as:
[tex]\mathbf{A(x) = 2000x^{-1} + 160 + 4x^\frac{1}{2}}[/tex]
Differentiate
[tex]\mathbf{A'(x) = -1 \times 2000x^{-2} + 0+ \frac 12 \times 4x^{-\frac{1}{2}}}[/tex]
[tex]\mathbf{A'(x) = -2000x^{-2} + 2x^{-\frac{1}{2}}}[/tex]
Set to 0
[tex]\mathbf{-2000x^{-2} + 2x^{-\frac{1}{2}} = 0}[/tex]
Rewrite as:
[tex]\mathbf{2000x^{-2} = 2x^{-\frac{1}{2}} }[/tex]
Divide through by 2
[tex]\mathbf{1000x^{-2} = x^{-\frac{1}{2}} }[/tex]
Multiply through by [tex]\mathbf{x^\frac 12}[/tex]
[tex]\mathbf{1000x^{-2 + \frac{1}{2}} = x^{-\frac{1}{2} + \frac{1}{2}} }[/tex]
[tex]\mathbf{1000x^{-2 + \frac{1}{2}} = x^0 }[/tex]
[tex]\mathbf{1000x^{\frac{-4+1}{2}} = 1 }[/tex]
[tex]\mathbf{1000x^{\frac{-3}{2}} = 1 }[/tex]
Divide both sides by 1000
[tex]\mathbf{x^{\frac{-3}{2}} = \frac{1}{1000} }[/tex]
Take multiplicative inverse of both sides
[tex]\mathbf{x^{\frac{3}{2}} = 1000}[/tex]
Square both sides
[tex]\mathbf{x^3 = 1000^2}[/tex]
Take cube roots of both sides
[tex]\mathbf{x = 1000^\frac 23}[/tex]
[tex]\mathbf{x = 100}[/tex]
Hence, the production level that will minimize the average cost is 100
Substitute 100 for x in [tex]\mathbf{A(x) = 2000x^{-1} + 160 + 4x^\frac{1}{2}}[/tex], to get the minimum average cost
[tex]\mathbf{A(100) = 2000 \times 100^{-1} + 160 + 4 \times 100^\frac{1}{2}}[/tex]
[tex]\mathbf{A(100) = 20 + 160 + 4 \times 10}[/tex]
[tex]\mathbf{A(100) = 20 + 160 + 40}[/tex]
[tex]\mathbf{A(100) = 220}[/tex]
The minimum average cost is $220
Read more about cost functions at:
https://brainly.com/question/13288616