Answer:
The solution is [tex](-\infty,-3)\cup(3,\infty)[/tex].
Step-by-step explanation:
Given:
The inequality given is:
[tex]|x|+4>7[/tex]
In order to simplify for 'x', we first isolate 'x' on one side.
Adding -4 on both sides, we get:
[tex]|x|+4-4>7-4\\\\|x|>3[/tex]
Now, [tex]|x|[/tex] is an absolute value function which is defined as:
[tex]|x|=\left \{ {{-x}\ \ x<0 \atop {x\ \ x\geq0}} \right.[/tex]
Therefore, the given inequality can be rewritten as:
[tex]-x > 3\\x<-3[/tex] and [tex]x > 3[/tex]
Therefore, the solution is [tex](-\infty,-3)\cup(3,\infty)[/tex].