Answer:
10989.55932 rad/s
Explanation:
m = Mass of object
M = Mass of neutron star = [tex]2\times 1.989\times 10^{30}\ kg[/tex]
R = Radius of neutron star = 13000 m
G = Gravitational constant = 6.67 × 10⁻¹¹ m³/kgs²
[tex]\omega[/tex] = Angular speed
Here, the gravitational force will balance the centripetal force
[tex]\dfrac{GmM}{R^2}=mR\omega^2\\\Rightarrow \omega=\sqrt{\dfrac{GM}{R^3}}\\\Rightarrow \omega=\sqrt{\dfrac{6.67\times 10^{-11}\times 2\times 1.989\times 10^{30}}{13000^3}}\\\Rightarrow \omega=10989.55932\ rad/s[/tex]
The greatest possible angular speed an object can have is 10989.55932 rad/s