Respuesta :
Answer:
Explanation:
Given
mass of bullet [tex]m=130 gm[/tex]
Length of barrel [tex]L=0.56 m [/tex]
Force [tex]F=11000+13000x-28000x^2[/tex]
Work done [tex]W=\int_{x_0}^{x_f}Fdx[/tex]
[tex]W_1=\int_{0}^{0.56}\left ( 11000+13000x-28000x^2\right )dx[/tex]
[tex]W_1=\left [ 11000x+6500x^2-\frac{28000}{3}x^3\right ]_0^{0.56}[/tex]
[tex]W_1=6160+2038.4-1639.082=6599.318 J\approx 6.599 kJ[/tex]
(b) When barrel is 1 m long
[tex]W_2=\int_{0}^{1}\left ( 11000+13000x-28000x^2\right )dx[/tex]
[tex]W_2=\left [ 11000x+6500x^2-\frac{28000}{3}x^3\right ]_0^{1}[/tex]
[tex]W_2=11000+6500-\frac{28000}{3}[/tex]
[tex]W_2=8166.66 kJ[/tex]
[tex]\frac{W_2}{W_1}=\frac{8166.66}{6599.318}=1.237 kJ[/tex]
Answer:
Explanation:
mass of bullet, m = 130 g
Force, F = 11000 + 13000 x - 28000 x²
(a) the work done by the gas is given by
[tex]W = \int F dx[/tex]
[tex]W_{1} = \int_{0}^{0.56}\left ( 11000+13000x-28000x^{2} \right )dx[/tex]
[tex]W_{1}=11000\times 5.6+6500\times 5.6\times 5.6-9333.33\times 5.6\times 5.6\times 5.6[/tex]
W1 = 1904522.08 J
(b) the work done by the gas is given by
[tex]W = \int F dx[/tex]
[tex]W_{2} = \int_{0}^{1}\left ( 11000+13000x-28000x^{2} \right )dx[/tex]
[tex]W_{1}=11000\times 1+6500\times 1-9333.33\times 1
W2 = 8166.67 J
W1 / W2 = 233.2