Answer: d) 15 to 25
Step-by-step explanation:
Given : Sample size : n= 16
Degree of freedom = df =n-1 = 15
Sample mean : [tex]\overline{x}=20[/tex]
sample standard deviation : [tex]s= 12[/tex]
Significance level : [tex]\alpha= 1-0.90=0.10[/tex]
Since population standard deviation is unavailable , so the confidence interval for the population mean is given by:-
[tex]\overline{x}\pm t_{\alpha/2, df}\dfrac{s}{\sqrt{n}}[/tex]
Using t-distribution table , we have
Critical value = [tex]t_{\alpha/2, df}=t_{0.05 , 15}=1.7530[/tex]
90% confidence interval for the mean value will be :
[tex]20\pm (1.7530)\dfrac{12}{\sqrt{16}}[/tex]
[tex]20\pm (1.7530)\dfrac{12}{4}[/tex]
[tex]20\pm (1.7530)(3)[/tex]
[tex]20\pm (5.259)[/tex]
[tex](20-5.259,\ 20+5.259)[/tex]
[tex](14.741,\ 25.259)\approx(15,\ 25 )[/tex][Round to the nearest integer]
Hence, the 90% confidence interval (to the nearest integer) for the standard deviation of the random variable.= 15 to 25.