Answer:
Explanation:
Given
mass of astronaut m=80 kg
Drift d=5 m
Power P=1000 W
time allowed for laser t=1 hr
Force Provided by laser [tex]F=\frac{Power}{velocity}[/tex]
[tex]F=\frac{P}{c}[/tex] , where c=velocity of light
acceleration [tex]a=\frac{P}{mc}[/tex]
Using Kinematic relation
[tex]v=u+at[/tex]
here initial velocity is zero
[tex]v=a\times t[/tex]
[tex]v=\frac{P}{mc}\times t[/tex]
[tex]v=\frac{1000}{80\times 3\times 10^8}\times 3600[/tex]
[tex]v=1.5\times 10^{-4} s[/tex]
distance traveled
[tex]x=ut+\frac{1}{2}at^2[/tex]
[tex]x=\frac{1}{2}\frac{P}{mc}\times t^2[/tex]
[tex]x=0.5\times \frac{1000}{80\times 3\times 10^8}\times 3600^2[/tex]
[tex]x=0.27 m[/tex]
Distance left to travel is d=5-0.27=4.73 m
Oxygen left for 9 hrs
time to cover 4.73 m
[tex]time=\frac{4.73}{1.5\times 10^{-4}}[/tex]
[tex]t=31,533.33 s[/tex]
[tex]t=8.759 hr[/tex]
Therefore he will be able to cover 5 m before emptying cylinder