Respuesta :
Answer:
Explanation:
Given
Displacement is [tex]\frac{1}{3}[/tex] of Amplitude
i.e. [tex]x=\frac{A}{3}[/tex] , where A is maximum amplitude
Potential Energy is given by
[tex]U=\frac{1}{2}kx^2[/tex]
[tex]U=\frac{1}{2}k(\frac{A}{3})^2[/tex]
[tex]U=\frac{1}{18}kA^2[/tex]
Total Energy of SHM is given by
[tex]T.E.=\frac{1}{2}kA^2[/tex]
Total Energy=kinetic Energy+Potential Energy
[tex]K.E.=\frac{1}{2}kA^2 -\frac{1}{18}kA^2[/tex]
[tex]K.E.=\frac{8}{18}kA^2[/tex]
Potential Energy is [tex]\frac{1}{8}[/tex] th of Total Energy
Kinetic Energy is [tex]\frac{8}{9}[/tex] of Total Energy
(c)Kinetic Energy is [tex]0.5\times \frac{1}{2}kA^2[/tex]
[tex]P.E.=\frac{1}{4}kA^2[/tex]
[tex]\frac{1}{2}kx^2=\frac{1}{4}kA^2[/tex]
[tex]x=\frac{A}{\sqrt{2}}[/tex]
Answer:
Explanation:
Let the amplitude is A.
Displacement, x = one third of the amplitude = A/3
The total energy of the body executing Simple Harmonic Motion is given by
[tex]T=\frac{1}{2}KA^{2}[/tex]
(a) Kinetic energy of the particle executing SHM is given by
[tex]K=\frac{1}{2}K\left (A^{2} -x^{2} \right )[/tex]
[tex]K=\frac{1}{2}K\left (A^{2} -\frac{A}{9}^{2} \right )[/tex]
[tex]K=\frac{1}{2}\times \frac{8A^{2}}{9}[/tex]
So, the ratio of kinetic energy to the total energy is given by
K / T = 8 / 9
(b) Potential energy of a particle executing SHM is given by
[tex]U=\frac{1}{2}Kx^{2}[/tex]
[tex]T=\frac{1}{2}\times \frac{A^{2}}{9}[/tex]
So, the ratio of potential energy to the total energy is given by
U / T = 1 / 9
(c) Let at a displacement y the kinetic energy is equal to the potential energy
[tex]\frac{1}{2}\times K\times \left ( A^{2}-y^{2} \right )=\frac{1}{2}\times K\times y^{2}[/tex]
[tex]y=\frac{A}{\sqrt{2}}[/tex]