Respuesta :
Answer:
[tex]v_2=1.09\times 10^7\ m/s[/tex]
Explanation:
It is given that,
Charge of alpha particle, [tex]q=2e=2\times 1.6\times 10^{-19}=3.2\times 10^{-19}\ C[/tex]
Mass of the alpha particle, [tex]m=6.64\times 10^{-27}\ kg[/tex]
Potential difference, [tex](V_1-V_2)=1.24\times 10^6\ V[/tex]
Magnetic field, B = 2.5 T
The α-particle moves perpendicular to the magnetic field at all times. The initial speed of the alpha particle is 0 as it is at rest. Using the conservation of energy as :
[tex]\dfrac{1}{2}mv_1^2+qV_1=\dfrac{1}{2}mv_2^2+qV_2[/tex]
[tex]v_2[/tex] is the speed of the α–particle
[tex]q(V_1-V_2)=\dfrac{1}{2}mv_2^2[/tex]
[tex]v_2=\sqrt{\dfrac{2q(V_1-V_2)}{m}}[/tex]
[tex]v_2=\sqrt{\dfrac{2\times 3.2\times 10^{-19}\times 1.24\times 10^6}{6.64\times 10^{-27}}}[/tex]
[tex]v_2=1.09\times 10^7\ m/s[/tex]
So, the speed of alpha particle is [tex]1.09\times 10^7\ m/s[/tex]. Hence, this is the required solution.
Answer:
1.1 x 10^7 m/s
Explanation:
mass of electron, m = 6.64 x 10^-27 kg
charge of electron, q = 2 x 1.6 x 10^-19 C
potential difference, V = 1.24 x 10^6 V
Magnetic field, B = 2.5 T
Let v be the velocity of alpha particle
Kinetic energy is given by q V
0.5 x m v² = q V
0.5 x 6.64 x 10^-27 x v² = 3.2 x 10^-19 x 1.24 x 10^6
3.32 x 10^-27 x v² = 3.968 x 10^-13
v² = 1.195 x 10^14
v = 1.1 x 10^7 m/s
Thus, the speed of alpha particles is 1.1 x 10^7 m/s.