Respuesta :
Answer:
[tex]Var[X+500+1.08Y]=Var[X+1.08Y]= 1^2 (8100) + 1.08^2 (10000) +2(950)=21664[/tex]
Step-by-step explanation:
Previous notation
Let X and Y random variables we have the following properties given:
Var(X) = 8100
Var(Y)= 10000
Var(X+Y)=20000
And we are interested on find the variance for the following random variable X+500+1.08Y
[tex]Var(X+500+1.08Y)[/tex]
We have the following properties when we have a sum of random variables
If Y is a random variable:
[tex]Var [\sum_{i=1}^n c_i Y_i]=\sum_{i=1}^n c^2_i Var(Y_i) +2 \sum_{i=1}^n \sum_{j=i+1}^n c_i c_j Cov [Y_i, Y_j][/tex] (1)
This property is derived from the expected value of the random variable Y:
[tex]Var(Y+c) =Var(Y)[/tex] (2)
Solution to the problem
Using the (2) property we have:
[tex]Var[X+500+1.08Y]=Var[X+1.08Y][/tex]
And using the property (1) we have:
[tex]Var[X+1.08Y]= 1^2 Var[X] + 1.08^2 Var[Y] +2Cov(X,Y)[/tex]
But we don't know the covariance for the two random variables so we can use the Var(X+Y) to find Cov(X,Y) like this:
[tex] Var[X+Y]= Var[X]+Var[Y] +2Cov(X,Y)[/tex]
Solving for Cov(X,Y) we got:
[tex]2Cov(X,Y)=Var[X+Y] -Var[X] -Var[Y][/tex]
[tex]Cov(X,Y)=\frac{20000-10000-8100}{2}=950[/tex]
And then we can use this in order to find Var[X+500+1.08Y] like this:
[tex]Var[X+500+1.08Y]=Var[X+1.08Y]= 1^2 (8100) + 1.08^2 (10000) +2(950)=21664[/tex]