Answer:
W = 9533.09 Watt
Explanation:
given,
diameter of pipe inlet, d₁ = 10 cm
r₁ = 5 cm
diameter of pipe outlet, d₂ = 15 cm
r₂= 7.5 cm
head upto water level is to rise = 60 + 5
= 65 m
flow rate = 0.015 m³/s
we know
A₁ v₁ = A₂ v₂ = Q
π r₁² v₁ = π r₂² v₂ = 0.015
[tex]v_1= \dfrac{r_2^2}{r_1^2} v_2[/tex]
[tex]v_1= \dfrac{7.5^2}{5^2} v_2[/tex]
[tex]v_1= 2.25 v_2[/tex]
[tex]v_2 = \dfrac{0.015}{\pi r_2^2}[/tex]
[tex]v_2 = \dfrac{0.015}{\pi 0.075^2}[/tex]
v₂ = 0.848 m/s
v₁ = 1.908 m/s
Applying Bernoulli's equation
[tex]P_p = \dfrac{1}{2}\rho (v_2^2-v_1^2)+ \rho g h[/tex]
[tex]P_p= \dfrac{1}{2}\times 1000\times (0.848^2-1.908^2)+ 1000\times 9.8\times 65[/tex]
[tex]P_p= 635539.32 Pa[/tex]
P_p is the pump pressure
Power of the pump
W = P_p x Q
W = 635539.32 x 0.015
W = 9533.09 Watt