AB = 6x DC = x + 15 AD = 9 BC = 3y Quadrilateral ABCD is a parallelogram if both pairs of opposite sides are congruent. Show that quadrilateral ABCD is a parallelogram by finding the lengths of the opposite side pairs. A) 9, 6 B) 12, 9 C) 18, 9 D) 18, 12

Respuesta :

Answer:

Therefore the lengths of the opposite side pairs.

C) 18, 9

Step-by-step explanation:

Given:

Quadrilateral ABCD is a parallelogram

AB = 6x

DC = x + 15

AD = 9

BC = 3y

TO Find:

AB = ?

BC = ?

Solution:

Quadrilateral ABCD is a parallelogram ..........Given

∴ Both pairs of opposite sides of a Parallelogram are congruent.

∴ AB = DC   and AD = BC

substituting the values we get

[tex]6x=x+15\\6x-x=15\\5x=15\\x=\dfrac{15}{5}\\ x=3\\and\\9=3y\\y=\dfrac{9}{3}\\ y=3[/tex]

substituting the x' and 'y' values we get

[tex]AB= 6\times 3=18\\and\\BC=3\times 3=9[/tex]

Therefore the lengths of the opposite side pairs.

C) 18, 9

Ver imagen inchu420
ACCESS MORE