Answer:
W = 0.678 rad/s
Explanation:
Using the conservation of energy:
[tex]E_i =E_f[/tex]
Roll up and hill without slipping is the sumatory of two energys, rotational and translational, so:
[tex]\frac{1}{2}IW^2+ \frac{1}{2}mV^2 = mgh[/tex]
where I is the moment of inertia, W the angular velocity at the base of the hill, m the mass of the ball, V the velocity at the base of the hill, g the gravity and h the altitude.
First, we will find the moment of inertia as:
I =[tex]\frac{2}{3}mR^2[/tex]
where m is the mass and R the radius, so:
I =[tex]\frac{2}{3}(0.426kg)(11.3m)^2[/tex]
I = 36.26 Kg*m^2
Then, replacing values on the initial equation, we get:
[tex]\frac{1}{2}(36.26)W^2+ \frac{1}{2}(0.426kg)V^2 = (0.426kg)(9.8)(5m)[/tex]
also we know that:
V =WR
so:
[tex]\frac{1}{2}(36.26)W^2+ \frac{1}{2}(0.426kg)W^2R^2 = (0.426kg)(9.8)(5m)[/tex]
Finally, solving for W, we get:
[tex]W^2(\frac{1}{2}(36.26)+ \frac{1}{2}(0.426kg)(11.3m)^2) = (0.426kg)(9.8)(5m)[/tex]
W = 0.678 rad/s