The function f(x) varies inversely with x and f(x)= -10 when x = 20
What is the inverse variation equation?
A. f(x) = -2/x
B. f(x) = - 50/x
C. f(x) = - 0.5/x
D. f(x) = -5/x

Respuesta :

Answer:

The inverse variation function can be written as:

[tex]f(x)=\frac{-200}{x}[/tex]

Step-by-step explanation:

Given :

[tex]f(x)[/tex] varies inversely with [tex]x[/tex]

when [tex]x=20[/tex], [tex]f(x)=-10[/tex]

To find the inverse variation equation.

Solution:

[tex]f(x)[/tex] varies inversely with [tex]x[/tex] can be represented as:

[tex]f(x)[/tex] ∝ [tex]\frac{1}{x}[/tex]

Thus, [tex]f(x)=\frac{k}{x}[/tex]

where [tex]k[/tex] represents the constant of proportionality.

We can determine the value of [tex]k[/tex] by plugging in the values given.

when [tex]x=20[/tex], [tex]f(x)=-10[/tex]

So, we have

[tex]-10=\frac{k}{20}[/tex]

Multiplying both sides by 20.

[tex]20\times (-10)=20\times \frac{k}{20}[/tex]

[tex]-200=k[/tex]

Thus  the inverse variation function can be written as:

[tex]f(x)=\frac{-200}{x}[/tex]

ACCESS MORE