Respuesta :
Answer:
[tex]T_{f}[/tex] = 85.89 ° C
Explanation:
The linear thermal expansion process is given by
ΔL = L α ΔT
For the three-dimensional case, the expression takes the form
ΔV = V β ΔT
Let's apply this equation to our case
ΔV / V = -0.507% = -0.507 10-2
ΔT = (ΔV / V) 1 /β
ΔT = -0.507 10⁻² 1 / 1.15 10⁻³
ΔT = -4.409
[tex]T_{f}[/tex] –T₀ = 4,409
[tex]T_{f}[/tex] = T₀ - 4,409
[tex]T_{f}[/tex] = 90.3-4409
[tex]T_{f}[/tex] = 85.89 ° C
Answer:
Therefore final temperature = 85.89 °C
Explanation:
Coefficient of volume expansion: This is defined as an increase in volume, per unit volume per degree rise in temperature. The SI unit is 1/k. mathematically,
γ = ΔV/(V₁ΔT)......................... equation 1
Making ΔT the subject of formula in equation 1
ΔT = ΔV/(V₁γ)......................... equation 2
Where γ = coefficient of volume expansion, ΔV = increase in volume, ΔT = change in temperature, V₁ = Initial volume.
Where γ = 1.15 × 10⁻³ C⁻¹, V₁ = X ΔV = 0.00507X
Substituting this values into equation 2,
ΔT = 0.00507X/(X × 1.15 × 10⁻³ )
ΔT = 0.00507/0.00115
ΔT = 4.41 °C.
For contraction,
ΔT = T₁ - T₂
∴ T₂ = T₁ - ΔT
Where T₁ = 90.3 °C
T₂ = 90.3 - 4.41 = 85.89 °C
T₂ = 85.89 °C
Therefore final temperature = 85.89 °C