Answer:
[tex]s = \frac{1}{2\mu g}\left (\frac{mv_{0}}{m + M} \right )^{2}[/tex]
Explanation:
mass of bullet = m
mass of block = M
initial speed of bullet = vo
coefficient of friction = μ
Let the horizontal distance traveled before stopping is s.
Let v be the velocity of the bullet and block system after collision.
Use conservation of momentum
m x vo = (M+m) x v
[tex]v = \frac{mv_{0}}{m + M}[/tex]
Now use third equation of motion
v² = u² - 2 a s
So,
[tex]0 = \left (\frac{mv_{0}}{m + M} \right )^{2}-2\mu gs[/tex]
[tex]s = \frac{1}{2\mu g}\left (\frac{mv_{0}}{m + M} \right )^{2}[/tex]