Answer:
k = 0.2645
Step-by-step explanation:
Given model:
y = 4070 [tex]e^{kt}[/tex]
y = no. of hits website received = 9000 (in 3rd month)
t= no. of months website has been operational = 3
put in the above equation:
9000 = 4070 [tex]e^{3k}[/tex]
[tex]\frac{9000}{4070}[/tex] = [tex]e^{3k}[/tex]
[tex]\frac{900}{407}[/tex]=[tex]e^{3k}[/tex]
Taking natural logarithm on both sides, we get:
[tex]ln\frac{900}{407}[/tex]=[tex]ln(e^{3k})[/tex]
[tex]ln\frac{900}{407}[/tex]= 3k lne
lne=1
[tex]ln \frac{900}{407}[/tex]= 3k
or k = [tex]\frac{1}{3}[/tex][tex]ln\frac{900}{(407)}[/tex]
k =[tex]\frac{1}{3}[/tex](0.7936)
k = 0.2645