Upper half of the unit sphere (call it [tex]S_1[/tex]): parameterize by
[tex]\vec s(u,v)=(\cos u\sin v,\sin u\sin v,\cos v)[/tex]
with [tex]0\le u\le2\pi[/tex] and [tex]0\le v\le\frac\pi2[/tex]. Take the normal vector to be
[tex]\dfrac{\partial\vec s}{\partial v}\times\dfrac{\partial\vec s}{\partial u}=(\cos u\sin^2v,\sin u\sin^2v,\cos v\sin v)[/tex]
Then the flux of [tex]\vec F[/tex] over this surface is
[tex]\displaystyle\iint_{S_1}\vec F\cdot\mathrm d\vec S=\int_0^{\pi/2}\int_0^{2\pi}(\cos v,\cos u\sin v,\sin u\sin v)\cdot(\cos u\sin^2v,\sin u\sin^2v,\cos v\sin v)\,\mathrm du\,\mathrm dv[/tex]
[tex]=\displaystyle\int_0^{\pi/2}\int_0^{2\pi}\cos u\sin^2v\cos v+\cos u\sin u\sin^3v+\sin u\cos v\sin^2v=\boxed{0}[/tex]
Lower half of the sphere (call it [tex]S_2[/tex]): all the details remain the same as above, but with [tex]\frac\pi2\le v\le\pi[/tex]. The flux is again [tex]\boxed{0}[/tex].
Unit disk (call it [tex]D[/tex]): parameterize the disk by
[tex]\vec s(u,v)=(u\cos v,u\sin v,0)[/tex]
with [tex]0\le u\le1[/tex] and [tex]0\le v\le2\pi[/tex]. Take the normal vector to be
[tex]\dfrac{\partial\vec s}{\partial u}\times\dfrac{\partial\vec s}{\partial v}=(0,0,u)[/tex]
Then the flux across [tex]D[/tex] is
[tex]\displaystyle\iint_D\vec F\cdot\mathrm d\vec S=\int_0^{2\pi}\int_0^1(0,u\cos v,u\sin v)\cdot(0,0,u)\,\mathrm du\,\mathrm dv[/tex]
[tex]=\displaystyle\int_0^{2\pi}\int_0^1u^2\sin v\,\mathrm du\,\mathrm dv=\boxed{0}[/tex]