[tex]X[/tex] follows the standard uniform distribution, so [tex]P(X=x)[/tex] is 1 if [tex]x\in[0,1][/tex] and 0 otherwise. Then the [tex]n[/tex]th moment of [tex]X[/tex] would be
[tex]E[X^n]=\displaystyle\int_{-\infty}^\infty x^nP(X=x)\,\mathrm dx=\int_0^1x^n\,\mathrm dx=\dfrac{x^{n+1}}{n+1}\bigg|_0^1=\boxed{\frac1{n+1}}[/tex]
The moment generating function is
[tex]M_X(t)=E[e^{tX}]=\displaystyle\int_{-\infty}^\infty e^{tx}P(X=x)\,\mathrm dx=\int_0^1e^{tx}\,\mathrm dx=\frac{e^{tx}}t\bigg|_0^1=\frac{e^t-1}t[/tex]
Recall that
[tex]e^t=\displaystyle\sum_{n=0}^\infty\frac{t^n}{n!}[/tex]
Then
[tex]\dfrac{e^t-1}t=\displaystyle\sum_{n=1}^\infty\frac{t^{n-1}}{n!}=\sum_{n=0}^\infty\frac{t^n}{(n+1)!}[/tex]
[tex]\dfrac{e^t-1}t=1+\dfrac t2+\dfrac{t^2}6+\dfrac{t^3}{24}+\dfrac{t^4}{120}+\cdots[/tex]
The [tex]n[/tex]th moment (denoted [tex]\mu_n[/tex]) is then the [tex]n[/tex]th derivative of the MGF about [tex]t=0[/tex], so that
[tex]\mu_0=M_X(0)=1[/tex]
[tex]\mu_1={M_X}'(0)=\dfrac12[/tex]
[tex]\mu_2={M_X}''(0)=\dfrac13[/tex]
and so on; in general,
[tex]\boxed{\mu_n={M_X}^{(n)}(0)=\dfrac1{n+1}}[/tex]