Respuesta :
Denote the triangle by [tex]T[/tex], so that
[tex]T=\{(x,y)\mid 0\le x\le1,0\le y\le1-x\}[/tex]
We have
[tex]\displaystyle\iint_T\mathrm dA=\int_0^1\int_0^{1-x}\mathrm dy\,\mathrm dx=\frac12[/tex]
(Alternatively, [tex]T[/tex] is a triangle with base and height 1, so its area is 1/2.)
Then the joint PDF of [tex]X,Y[/tex] is
[tex]f_{X,Y}(x,y)=\begin{cases}\frac12&\text{for }(x,y)\in T\\0&\text{otherwise}\end{cases}[/tex]
Covariance is defined as
[tex]\mathrm{Cov}[X,Y]=E[(X-E[X])(Y-E[Y])]=E[XY]-E[X]E[Y][/tex]
We can get the expectations we need from the joint PDF:
[tex]E[X]=\displaystyle\iint_{\Bbb R^2}xf_{X,Y}(x,y)\,\mathrm dA=\frac12\iint_Tx\,\mathrm dA=\frac12\int_0^1\int_0^{1-x}x\,\mathrm dy\,\mathrm dx=\frac1{12}[/tex]
[tex]E[Y]=\displaystyle\iint_{\Bbb R^2}yf_{X,Y}(x,y)\,\mathrm dA=\frac1{12}[/tex]
[tex]E[XY]=\displaystyle\iint_{\Bbb R^2}xyf_{X,Y}(x,y)\,\mathrm dA=\frac1{48}[/tex]
Then the covariance is
[tex]\mathrm{Cov}[X,Y]=\dfrac1{48}-\dfrac1{12^2}=\boxed{\dfrac1{72}}[/tex]
Correlation is defined as
[tex]\mathrm{Corr}[X,Y]=\dfrac{\mathrm{Cov}[X,Y]}{\sqrt{\mathrm{Var}[X]\mathrm{Var}[Y]}}[/tex]
We have for any random variable [tex]X[/tex],
[tex]\mathrm{Var}[X]=E[(X-E[X])^2]=E[X^2]-E[X]^2[/tex]
Now,
[tex]E[X^2]=\displaystyle\iint_{\Bbb R^2}x^2f_{X,Y}(x,y)\,\mathrm dA=\frac1{24}[/tex]
[tex]E[Y^2]=\displaystyle\iint_{\Bbb R^2}y^2f_{X,Y}(x,y)\,\mathrm dA=\frac1{24}[/tex]
so that the correlation is
[tex]\mathrm{Corr}[X,Y]=\dfrac{\frac1{72}}{\sqrt{\left(\frac1{24}-\frac1{12^2}\right)^2}}=\boxed{\dfrac25}[/tex]