Answer:
100 miles
Step-by-step explanation:
Let
x ----> the number of miles driven
y ---> the total cost
we know that
The linear equation in slope intercept form is equal to
[tex]y=mx+b[/tex]
where
m is the slope or unit rate of the linear equation
b is the y-intercept or initial value
In this problem we have
First Plan
The slope is equal to [tex]m=\$0.15\ per\ mile[/tex]
The y-intercept is [tex]b=\$54[/tex]
so
The linear equation is
[tex]y=0.15x+54[/tex] -----> equation A
Second Plan
The slope is equal to [tex]m=\$0.10\ per\ mile[/tex]
The y-intercept is [tex]b=\$59[/tex]
so
The linear equation is
[tex]y=0.10x+59[/tex] -----> equation B
To find out for what amount of driving do the two plans cost the same, equate equation A and equation B
[tex]0.15x+54=0.10x+59[/tex]
solve for x
[tex]0.15x-0.10x=59-54[/tex]
[tex]0.05x=5[/tex]
[tex]x=100\ miles[/tex]
Find the cost
for x=100 miles
substitute in equation A or equation B (the cost is the same)
[tex]y=0.15(100)+54=\$69[/tex]